This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two simple functions is a simple function. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | i1fsub | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF - G ) e. dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | |- RR e. _V |
|
| 2 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 3 | ax-resscn | |- RR C_ CC |
|
| 4 | fss | |- ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC ) |
|
| 5 | 2 3 4 | sylancl | |- ( F e. dom S.1 -> F : RR --> CC ) |
| 6 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 7 | fss | |- ( ( G : RR --> RR /\ RR C_ CC ) -> G : RR --> CC ) |
|
| 8 | 6 3 7 | sylancl | |- ( G e. dom S.1 -> G : RR --> CC ) |
| 9 | ofnegsub | |- ( ( RR e. _V /\ F : RR --> CC /\ G : RR --> CC ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
|
| 10 | 1 5 8 9 | mp3an3an | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) = ( F oF - G ) ) |
| 11 | simpl | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> F e. dom S.1 ) |
|
| 12 | simpr | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> G e. dom S.1 ) |
|
| 13 | neg1rr | |- -u 1 e. RR |
|
| 14 | 13 | a1i | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> -u 1 e. RR ) |
| 15 | 12 14 | i1fmulc | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( ( RR X. { -u 1 } ) oF x. G ) e. dom S.1 ) |
| 16 | 11 15 | i1fadd | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF + ( ( RR X. { -u 1 } ) oF x. G ) ) e. dom S.1 ) |
| 17 | 10 16 | eqeltrrd | |- ( ( F e. dom S.1 /\ G e. dom S.1 ) -> ( F oF - G ) e. dom S.1 ) |