This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *4.38 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.38 | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ( ph /\ ps ) <-> ( ch /\ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ph <-> ch ) ) |
|
| 2 | simpr | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ps <-> th ) ) |
|
| 3 | 1 2 | anbi12d | |- ( ( ( ph <-> ch ) /\ ( ps <-> th ) ) -> ( ( ph /\ ps ) <-> ( ch /\ th ) ) ) |