This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isose . (Contributed by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isofrlem.1 | |- ( ph -> H Isom R , S ( A , B ) ) |
|
| isofrlem.2 | |- ( ph -> ( H " x ) e. _V ) |
||
| Assertion | isoselem | |- ( ph -> ( R Se A -> S Se B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofrlem.1 | |- ( ph -> H Isom R , S ( A , B ) ) |
|
| 2 | isofrlem.2 | |- ( ph -> ( H " x ) e. _V ) |
|
| 3 | dfse2 | |- ( R Se A <-> A. z e. A ( A i^i ( `' R " { z } ) ) e. _V ) |
|
| 4 | 3 | biimpi | |- ( R Se A -> A. z e. A ( A i^i ( `' R " { z } ) ) e. _V ) |
| 5 | 4 | r19.21bi | |- ( ( R Se A /\ z e. A ) -> ( A i^i ( `' R " { z } ) ) e. _V ) |
| 6 | 5 | expcom | |- ( z e. A -> ( R Se A -> ( A i^i ( `' R " { z } ) ) e. _V ) ) |
| 7 | 6 | adantl | |- ( ( ph /\ z e. A ) -> ( R Se A -> ( A i^i ( `' R " { z } ) ) e. _V ) ) |
| 8 | imaeq2 | |- ( x = ( A i^i ( `' R " { z } ) ) -> ( H " x ) = ( H " ( A i^i ( `' R " { z } ) ) ) ) |
|
| 9 | 8 | eleq1d | |- ( x = ( A i^i ( `' R " { z } ) ) -> ( ( H " x ) e. _V <-> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 10 | 9 | imbi2d | |- ( x = ( A i^i ( `' R " { z } ) ) -> ( ( ph -> ( H " x ) e. _V ) <-> ( ph -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) ) |
| 11 | 10 2 | vtoclg | |- ( ( A i^i ( `' R " { z } ) ) e. _V -> ( ph -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 12 | 11 | com12 | |- ( ph -> ( ( A i^i ( `' R " { z } ) ) e. _V -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ z e. A ) -> ( ( A i^i ( `' R " { z } ) ) e. _V -> ( H " ( A i^i ( `' R " { z } ) ) ) e. _V ) ) |
| 14 | isoini | |- ( ( H Isom R , S ( A , B ) /\ z e. A ) -> ( H " ( A i^i ( `' R " { z } ) ) ) = ( B i^i ( `' S " { ( H ` z ) } ) ) ) |
|
| 15 | 1 14 | sylan | |- ( ( ph /\ z e. A ) -> ( H " ( A i^i ( `' R " { z } ) ) ) = ( B i^i ( `' S " { ( H ` z ) } ) ) ) |
| 16 | 15 | eleq1d | |- ( ( ph /\ z e. A ) -> ( ( H " ( A i^i ( `' R " { z } ) ) ) e. _V <-> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 17 | 13 16 | sylibd | |- ( ( ph /\ z e. A ) -> ( ( A i^i ( `' R " { z } ) ) e. _V -> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 18 | 7 17 | syld | |- ( ( ph /\ z e. A ) -> ( R Se A -> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 19 | 18 | ralrimdva | |- ( ph -> ( R Se A -> A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 20 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 21 | f1ofn | |- ( H : A -1-1-onto-> B -> H Fn A ) |
|
| 22 | sneq | |- ( y = ( H ` z ) -> { y } = { ( H ` z ) } ) |
|
| 23 | 22 | imaeq2d | |- ( y = ( H ` z ) -> ( `' S " { y } ) = ( `' S " { ( H ` z ) } ) ) |
| 24 | 23 | ineq2d | |- ( y = ( H ` z ) -> ( B i^i ( `' S " { y } ) ) = ( B i^i ( `' S " { ( H ` z ) } ) ) ) |
| 25 | 24 | eleq1d | |- ( y = ( H ` z ) -> ( ( B i^i ( `' S " { y } ) ) e. _V <-> ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 26 | 25 | ralrn | |- ( H Fn A -> ( A. y e. ran H ( B i^i ( `' S " { y } ) ) e. _V <-> A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 27 | 1 20 21 26 | 4syl | |- ( ph -> ( A. y e. ran H ( B i^i ( `' S " { y } ) ) e. _V <-> A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V ) ) |
| 28 | f1ofo | |- ( H : A -1-1-onto-> B -> H : A -onto-> B ) |
|
| 29 | forn | |- ( H : A -onto-> B -> ran H = B ) |
|
| 30 | 1 20 28 29 | 4syl | |- ( ph -> ran H = B ) |
| 31 | 30 | raleqdv | |- ( ph -> ( A. y e. ran H ( B i^i ( `' S " { y } ) ) e. _V <-> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) ) |
| 32 | 27 31 | bitr3d | |- ( ph -> ( A. z e. A ( B i^i ( `' S " { ( H ` z ) } ) ) e. _V <-> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) ) |
| 33 | 19 32 | sylibd | |- ( ph -> ( R Se A -> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) ) |
| 34 | dfse2 | |- ( S Se B <-> A. y e. B ( B i^i ( `' S " { y } ) ) e. _V ) |
|
| 35 | 33 34 | imbitrrdi | |- ( ph -> ( R Se A -> S Se B ) ) |