This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofr | |- ( H Isom R , S ( A , B ) -> ( R Fr A <-> S Fr B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | |- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
|
| 2 | id | |- ( `' H Isom S , R ( B , A ) -> `' H Isom S , R ( B , A ) ) |
|
| 3 | isof1o | |- ( `' H Isom S , R ( B , A ) -> `' H : B -1-1-onto-> A ) |
|
| 4 | f1ofun | |- ( `' H : B -1-1-onto-> A -> Fun `' H ) |
|
| 5 | vex | |- x e. _V |
|
| 6 | 5 | funimaex | |- ( Fun `' H -> ( `' H " x ) e. _V ) |
| 7 | 3 4 6 | 3syl | |- ( `' H Isom S , R ( B , A ) -> ( `' H " x ) e. _V ) |
| 8 | 2 7 | isofrlem | |- ( `' H Isom S , R ( B , A ) -> ( R Fr A -> S Fr B ) ) |
| 9 | 1 8 | syl | |- ( H Isom R , S ( A , B ) -> ( R Fr A -> S Fr B ) ) |
| 10 | id | |- ( H Isom R , S ( A , B ) -> H Isom R , S ( A , B ) ) |
|
| 11 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 12 | f1ofun | |- ( H : A -1-1-onto-> B -> Fun H ) |
|
| 13 | 5 | funimaex | |- ( Fun H -> ( H " x ) e. _V ) |
| 14 | 11 12 13 | 3syl | |- ( H Isom R , S ( A , B ) -> ( H " x ) e. _V ) |
| 15 | 10 14 | isofrlem | |- ( H Isom R , S ( A , B ) -> ( S Fr B -> R Fr A ) ) |
| 16 | 9 15 | impbid | |- ( H Isom R , S ( A , B ) -> ( R Fr A <-> S Fr B ) ) |