This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of well-founded relation. Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 23-Apr-2004) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr3 | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr2 | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
|
| 2 | iniseg | |- ( y e. _V -> ( `' R " { y } ) = { z | z R y } ) |
|
| 3 | 2 | elv | |- ( `' R " { y } ) = { z | z R y } |
| 4 | 3 | ineq2i | |- ( x i^i ( `' R " { y } ) ) = ( x i^i { z | z R y } ) |
| 5 | dfrab3 | |- { z e. x | z R y } = ( x i^i { z | z R y } ) |
|
| 6 | 4 5 | eqtr4i | |- ( x i^i ( `' R " { y } ) ) = { z e. x | z R y } |
| 7 | 6 | eqeq1i | |- ( ( x i^i ( `' R " { y } ) ) = (/) <-> { z e. x | z R y } = (/) ) |
| 8 | 7 | rexbii | |- ( E. y e. x ( x i^i ( `' R " { y } ) ) = (/) <-> E. y e. x { z e. x | z R y } = (/) ) |
| 9 | 8 | imbi2i | |- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
| 10 | 9 | albii | |- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
| 11 | 1 10 | bitr4i | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |