This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that a function M is the inverse function of a group. (Contributed by NM, 7-Aug-2013) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | |- B = ( Base ` G ) |
|
| grpinv.p | |- .+ = ( +g ` G ) |
||
| grpinv.u | |- .0. = ( 0g ` G ) |
||
| grpinv.n | |- N = ( invg ` G ) |
||
| Assertion | isgrpinv | |- ( G e. Grp -> ( ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) <-> N = M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | |- B = ( Base ` G ) |
|
| 2 | grpinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinv.u | |- .0. = ( 0g ` G ) |
|
| 4 | grpinv.n | |- N = ( invg ` G ) |
|
| 5 | 1 2 3 4 | grpinvval | |- ( x e. B -> ( N ` x ) = ( iota_ e e. B ( e .+ x ) = .0. ) ) |
| 6 | 5 | ad2antlr | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( N ` x ) = ( iota_ e e. B ( e .+ x ) = .0. ) ) |
| 7 | simpr | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( ( M ` x ) .+ x ) = .0. ) |
|
| 8 | simpllr | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> M : B --> B ) |
|
| 9 | simplr | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> x e. B ) |
|
| 10 | 8 9 | ffvelcdmd | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( M ` x ) e. B ) |
| 11 | 1 2 3 | grpinveu | |- ( ( G e. Grp /\ x e. B ) -> E! e e. B ( e .+ x ) = .0. ) |
| 12 | 11 | ad4ant13 | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> E! e e. B ( e .+ x ) = .0. ) |
| 13 | oveq1 | |- ( e = ( M ` x ) -> ( e .+ x ) = ( ( M ` x ) .+ x ) ) |
|
| 14 | 13 | eqeq1d | |- ( e = ( M ` x ) -> ( ( e .+ x ) = .0. <-> ( ( M ` x ) .+ x ) = .0. ) ) |
| 15 | 14 | riota2 | |- ( ( ( M ` x ) e. B /\ E! e e. B ( e .+ x ) = .0. ) -> ( ( ( M ` x ) .+ x ) = .0. <-> ( iota_ e e. B ( e .+ x ) = .0. ) = ( M ` x ) ) ) |
| 16 | 10 12 15 | syl2anc | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( ( ( M ` x ) .+ x ) = .0. <-> ( iota_ e e. B ( e .+ x ) = .0. ) = ( M ` x ) ) ) |
| 17 | 7 16 | mpbid | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( iota_ e e. B ( e .+ x ) = .0. ) = ( M ` x ) ) |
| 18 | 6 17 | eqtrd | |- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( N ` x ) = ( M ` x ) ) |
| 19 | 18 | ex | |- ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) -> ( ( ( M ` x ) .+ x ) = .0. -> ( N ` x ) = ( M ` x ) ) ) |
| 20 | 19 | ralimdva | |- ( ( G e. Grp /\ M : B --> B ) -> ( A. x e. B ( ( M ` x ) .+ x ) = .0. -> A. x e. B ( N ` x ) = ( M ` x ) ) ) |
| 21 | 20 | impr | |- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> A. x e. B ( N ` x ) = ( M ` x ) ) |
| 22 | 1 4 | grpinvfn | |- N Fn B |
| 23 | ffn | |- ( M : B --> B -> M Fn B ) |
|
| 24 | 23 | ad2antrl | |- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> M Fn B ) |
| 25 | eqfnfv | |- ( ( N Fn B /\ M Fn B ) -> ( N = M <-> A. x e. B ( N ` x ) = ( M ` x ) ) ) |
|
| 26 | 22 24 25 | sylancr | |- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> ( N = M <-> A. x e. B ( N ` x ) = ( M ` x ) ) ) |
| 27 | 21 26 | mpbird | |- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> N = M ) |
| 28 | 27 | ex | |- ( G e. Grp -> ( ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) -> N = M ) ) |
| 29 | 1 4 | grpinvf | |- ( G e. Grp -> N : B --> B ) |
| 30 | 1 2 3 4 | grplinv | |- ( ( G e. Grp /\ x e. B ) -> ( ( N ` x ) .+ x ) = .0. ) |
| 31 | 30 | ralrimiva | |- ( G e. Grp -> A. x e. B ( ( N ` x ) .+ x ) = .0. ) |
| 32 | 29 31 | jca | |- ( G e. Grp -> ( N : B --> B /\ A. x e. B ( ( N ` x ) .+ x ) = .0. ) ) |
| 33 | feq1 | |- ( N = M -> ( N : B --> B <-> M : B --> B ) ) |
|
| 34 | fveq1 | |- ( N = M -> ( N ` x ) = ( M ` x ) ) |
|
| 35 | 34 | oveq1d | |- ( N = M -> ( ( N ` x ) .+ x ) = ( ( M ` x ) .+ x ) ) |
| 36 | 35 | eqeq1d | |- ( N = M -> ( ( ( N ` x ) .+ x ) = .0. <-> ( ( M ` x ) .+ x ) = .0. ) ) |
| 37 | 36 | ralbidv | |- ( N = M -> ( A. x e. B ( ( N ` x ) .+ x ) = .0. <-> A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) |
| 38 | 33 37 | anbi12d | |- ( N = M -> ( ( N : B --> B /\ A. x e. B ( ( N ` x ) .+ x ) = .0. ) <-> ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) ) |
| 39 | 32 38 | syl5ibcom | |- ( G e. Grp -> ( N = M -> ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) ) |
| 40 | 28 39 | impbid | |- ( G e. Grp -> ( ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) <-> N = M ) ) |