This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties showing that a function M is the inverse function of a group. (Contributed by NM, 7-Aug-2013) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | isgrpinv | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ↔ 𝑁 = 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | 1 2 3 4 | grpinvval | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑁 ‘ 𝑥 ) = ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) ) |
| 6 | 5 | ad2antlr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( 𝑁 ‘ 𝑥 ) = ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) ) |
| 7 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) | |
| 8 | simpllr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → 𝑀 : 𝐵 ⟶ 𝐵 ) | |
| 9 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → 𝑥 ∈ 𝐵 ) | |
| 10 | 8 9 | ffvelcdmd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( 𝑀 ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 | 1 2 3 | grpinveu | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) |
| 12 | 11 | ad4ant13 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ∃! 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) |
| 13 | oveq1 | ⊢ ( 𝑒 = ( 𝑀 ‘ 𝑥 ) → ( 𝑒 + 𝑥 ) = ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑒 = ( 𝑀 ‘ 𝑥 ) → ( ( 𝑒 + 𝑥 ) = 0 ↔ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
| 15 | 14 | riota2 | ⊢ ( ( ( 𝑀 ‘ 𝑥 ) ∈ 𝐵 ∧ ∃! 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) → ( ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
| 16 | 10 12 15 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
| 17 | 7 16 | mpbid | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( ℩ 𝑒 ∈ 𝐵 ( 𝑒 + 𝑥 ) = 0 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 18 | 6 17 | eqtrd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 19 | 18 | ex | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 → ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
| 20 | 19 | ralimdva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 : 𝐵 ⟶ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 → ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
| 21 | 20 | impr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 22 | 1 4 | grpinvfn | ⊢ 𝑁 Fn 𝐵 |
| 23 | ffn | ⊢ ( 𝑀 : 𝐵 ⟶ 𝐵 → 𝑀 Fn 𝐵 ) | |
| 24 | 23 | ad2antrl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → 𝑀 Fn 𝐵 ) |
| 25 | eqfnfv | ⊢ ( ( 𝑁 Fn 𝐵 ∧ 𝑀 Fn 𝐵 ) → ( 𝑁 = 𝑀 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) | |
| 26 | 22 24 25 | sylancr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → ( 𝑁 = 𝑀 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) ) |
| 27 | 21 26 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) → 𝑁 = 𝑀 ) |
| 28 | 27 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) → 𝑁 = 𝑀 ) ) |
| 29 | 1 4 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |
| 30 | 1 2 3 4 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝐺 ∈ Grp → ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) |
| 32 | 29 31 | jca | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
| 33 | feq1 | ⊢ ( 𝑁 = 𝑀 → ( 𝑁 : 𝐵 ⟶ 𝐵 ↔ 𝑀 : 𝐵 ⟶ 𝐵 ) ) | |
| 34 | fveq1 | ⊢ ( 𝑁 = 𝑀 → ( 𝑁 ‘ 𝑥 ) = ( 𝑀 ‘ 𝑥 ) ) | |
| 35 | 34 | oveq1d | ⊢ ( 𝑁 = 𝑀 → ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) ) |
| 36 | 35 | eqeq1d | ⊢ ( 𝑁 = 𝑀 → ( ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
| 37 | 36 | ralbidv | ⊢ ( 𝑁 = 𝑀 → ( ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) |
| 38 | 33 37 | anbi12d | ⊢ ( 𝑁 = 𝑀 → ( ( 𝑁 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑁 ‘ 𝑥 ) + 𝑥 ) = 0 ) ↔ ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) ) |
| 39 | 32 38 | syl5ibcom | ⊢ ( 𝐺 ∈ Grp → ( 𝑁 = 𝑀 → ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ) ) |
| 40 | 28 39 | impbid | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑀 : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 𝑀 ‘ 𝑥 ) + 𝑥 ) = 0 ) ↔ 𝑁 = 𝑀 ) ) |