This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvval.b | |- B = ( Base ` G ) |
|
| grpinvval.p | |- .+ = ( +g ` G ) |
||
| grpinvval.o | |- .0. = ( 0g ` G ) |
||
| grpinvval.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvval | |- ( X e. B -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.b | |- B = ( Base ` G ) |
|
| 2 | grpinvval.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinvval.o | |- .0. = ( 0g ` G ) |
|
| 4 | grpinvval.n | |- N = ( invg ` G ) |
|
| 5 | oveq2 | |- ( x = X -> ( y .+ x ) = ( y .+ X ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = X -> ( ( y .+ x ) = .0. <-> ( y .+ X ) = .0. ) ) |
| 7 | 6 | riotabidv | |- ( x = X -> ( iota_ y e. B ( y .+ x ) = .0. ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |
| 8 | 1 2 3 4 | grpinvfval | |- N = ( x e. B |-> ( iota_ y e. B ( y .+ x ) = .0. ) ) |
| 9 | riotaex | |- ( iota_ y e. B ( y .+ X ) = .0. ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( X e. B -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |