This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 24-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinveu.b | |- B = ( Base ` G ) |
|
| grpinveu.p | |- .+ = ( +g ` G ) |
||
| grpinveu.o | |- .0. = ( 0g ` G ) |
||
| Assertion | grpinveu | |- ( ( G e. Grp /\ X e. B ) -> E! y e. B ( y .+ X ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinveu.b | |- B = ( Base ` G ) |
|
| 2 | grpinveu.p | |- .+ = ( +g ` G ) |
|
| 3 | grpinveu.o | |- .0. = ( 0g ` G ) |
|
| 4 | 1 2 3 | grpinvex | |- ( ( G e. Grp /\ X e. B ) -> E. y e. B ( y .+ X ) = .0. ) |
| 5 | eqtr3 | |- ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> ( y .+ X ) = ( z .+ X ) ) |
|
| 6 | 1 2 | grprcan | |- ( ( G e. Grp /\ ( y e. B /\ z e. B /\ X e. B ) ) -> ( ( y .+ X ) = ( z .+ X ) <-> y = z ) ) |
| 7 | 5 6 | imbitrid | |- ( ( G e. Grp /\ ( y e. B /\ z e. B /\ X e. B ) ) -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) |
| 8 | 7 | 3exp2 | |- ( G e. Grp -> ( y e. B -> ( z e. B -> ( X e. B -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) ) ) ) |
| 9 | 8 | com24 | |- ( G e. Grp -> ( X e. B -> ( z e. B -> ( y e. B -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) ) ) ) |
| 10 | 9 | imp41 | |- ( ( ( ( G e. Grp /\ X e. B ) /\ z e. B ) /\ y e. B ) -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) |
| 11 | 10 | an32s | |- ( ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) /\ z e. B ) -> ( ( ( y .+ X ) = .0. /\ ( z .+ X ) = .0. ) -> y = z ) ) |
| 12 | 11 | expd | |- ( ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) /\ z e. B ) -> ( ( y .+ X ) = .0. -> ( ( z .+ X ) = .0. -> y = z ) ) ) |
| 13 | 12 | ralrimdva | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> ( ( y .+ X ) = .0. -> A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) |
| 14 | 13 | ancld | |- ( ( ( G e. Grp /\ X e. B ) /\ y e. B ) -> ( ( y .+ X ) = .0. -> ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) ) |
| 15 | 14 | reximdva | |- ( ( G e. Grp /\ X e. B ) -> ( E. y e. B ( y .+ X ) = .0. -> E. y e. B ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) ) |
| 16 | 4 15 | mpd | |- ( ( G e. Grp /\ X e. B ) -> E. y e. B ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) |
| 17 | oveq1 | |- ( y = z -> ( y .+ X ) = ( z .+ X ) ) |
|
| 18 | 17 | eqeq1d | |- ( y = z -> ( ( y .+ X ) = .0. <-> ( z .+ X ) = .0. ) ) |
| 19 | 18 | reu8 | |- ( E! y e. B ( y .+ X ) = .0. <-> E. y e. B ( ( y .+ X ) = .0. /\ A. z e. B ( ( z .+ X ) = .0. -> y = z ) ) ) |
| 20 | 16 19 | sylibr | |- ( ( G e. Grp /\ X e. B ) -> E! y e. B ( y .+ X ) = .0. ) |