This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of Suppes p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfinite2 | |- ( A ~< _om -> A e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | |- Rel ~< |
|
| 2 | 1 | brrelex2i | |- ( A ~< _om -> _om e. _V ) |
| 3 | sdomdom | |- ( A ~< _om -> A ~<_ _om ) |
|
| 4 | domeng | |- ( _om e. _V -> ( A ~<_ _om <-> E. y ( A ~~ y /\ y C_ _om ) ) ) |
|
| 5 | 3 4 | imbitrid | |- ( _om e. _V -> ( A ~< _om -> E. y ( A ~~ y /\ y C_ _om ) ) ) |
| 6 | ensym | |- ( A ~~ y -> y ~~ A ) |
|
| 7 | 6 | ad2antrl | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> y ~~ A ) |
| 8 | simpl | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> A ~< _om ) |
|
| 9 | ensdomtr | |- ( ( y ~~ A /\ A ~< _om ) -> y ~< _om ) |
|
| 10 | 7 8 9 | syl2anc | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> y ~< _om ) |
| 11 | sdomnen | |- ( y ~< _om -> -. y ~~ _om ) |
|
| 12 | 10 11 | syl | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> -. y ~~ _om ) |
| 13 | simpr | |- ( ( A ~~ y /\ y C_ _om ) -> y C_ _om ) |
|
| 14 | unbnn | |- ( ( _om e. _V /\ y C_ _om /\ A. z e. _om E. w e. y z e. w ) -> y ~~ _om ) |
|
| 15 | 14 | 3expia | |- ( ( _om e. _V /\ y C_ _om ) -> ( A. z e. _om E. w e. y z e. w -> y ~~ _om ) ) |
| 16 | 2 13 15 | syl2an | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> ( A. z e. _om E. w e. y z e. w -> y ~~ _om ) ) |
| 17 | 12 16 | mtod | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> -. A. z e. _om E. w e. y z e. w ) |
| 18 | rexnal | |- ( E. z e. _om -. E. w e. y z e. w <-> -. A. z e. _om E. w e. y z e. w ) |
|
| 19 | omsson | |- _om C_ On |
|
| 20 | sstr | |- ( ( y C_ _om /\ _om C_ On ) -> y C_ On ) |
|
| 21 | 19 20 | mpan2 | |- ( y C_ _om -> y C_ On ) |
| 22 | nnord | |- ( z e. _om -> Ord z ) |
|
| 23 | ssel2 | |- ( ( y C_ On /\ w e. y ) -> w e. On ) |
|
| 24 | vex | |- w e. _V |
|
| 25 | 24 | elon | |- ( w e. On <-> Ord w ) |
| 26 | 23 25 | sylib | |- ( ( y C_ On /\ w e. y ) -> Ord w ) |
| 27 | ordtri1 | |- ( ( Ord w /\ Ord z ) -> ( w C_ z <-> -. z e. w ) ) |
|
| 28 | 26 27 | sylan | |- ( ( ( y C_ On /\ w e. y ) /\ Ord z ) -> ( w C_ z <-> -. z e. w ) ) |
| 29 | 28 | an32s | |- ( ( ( y C_ On /\ Ord z ) /\ w e. y ) -> ( w C_ z <-> -. z e. w ) ) |
| 30 | 29 | ralbidva | |- ( ( y C_ On /\ Ord z ) -> ( A. w e. y w C_ z <-> A. w e. y -. z e. w ) ) |
| 31 | unissb | |- ( U. y C_ z <-> A. w e. y w C_ z ) |
|
| 32 | ralnex | |- ( A. w e. y -. z e. w <-> -. E. w e. y z e. w ) |
|
| 33 | 32 | bicomi | |- ( -. E. w e. y z e. w <-> A. w e. y -. z e. w ) |
| 34 | 30 31 33 | 3bitr4g | |- ( ( y C_ On /\ Ord z ) -> ( U. y C_ z <-> -. E. w e. y z e. w ) ) |
| 35 | ordunisssuc | |- ( ( y C_ On /\ Ord z ) -> ( U. y C_ z <-> y C_ suc z ) ) |
|
| 36 | 34 35 | bitr3d | |- ( ( y C_ On /\ Ord z ) -> ( -. E. w e. y z e. w <-> y C_ suc z ) ) |
| 37 | 21 22 36 | syl2an | |- ( ( y C_ _om /\ z e. _om ) -> ( -. E. w e. y z e. w <-> y C_ suc z ) ) |
| 38 | peano2b | |- ( z e. _om <-> suc z e. _om ) |
|
| 39 | ssnnfi | |- ( ( suc z e. _om /\ y C_ suc z ) -> y e. Fin ) |
|
| 40 | 38 39 | sylanb | |- ( ( z e. _om /\ y C_ suc z ) -> y e. Fin ) |
| 41 | 40 | ex | |- ( z e. _om -> ( y C_ suc z -> y e. Fin ) ) |
| 42 | 41 | adantl | |- ( ( y C_ _om /\ z e. _om ) -> ( y C_ suc z -> y e. Fin ) ) |
| 43 | 37 42 | sylbid | |- ( ( y C_ _om /\ z e. _om ) -> ( -. E. w e. y z e. w -> y e. Fin ) ) |
| 44 | 43 | rexlimdva | |- ( y C_ _om -> ( E. z e. _om -. E. w e. y z e. w -> y e. Fin ) ) |
| 45 | 18 44 | biimtrrid | |- ( y C_ _om -> ( -. A. z e. _om E. w e. y z e. w -> y e. Fin ) ) |
| 46 | 45 | ad2antll | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> ( -. A. z e. _om E. w e. y z e. w -> y e. Fin ) ) |
| 47 | 17 46 | mpd | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> y e. Fin ) |
| 48 | simprl | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> A ~~ y ) |
|
| 49 | enfii | |- ( ( y e. Fin /\ A ~~ y ) -> A e. Fin ) |
|
| 50 | 47 48 49 | syl2anc | |- ( ( A ~< _om /\ ( A ~~ y /\ y C_ _om ) ) -> A e. Fin ) |
| 51 | 50 | ex | |- ( A ~< _om -> ( ( A ~~ y /\ y C_ _om ) -> A e. Fin ) ) |
| 52 | 51 | exlimdv | |- ( A ~< _om -> ( E. y ( A ~~ y /\ y C_ _om ) -> A e. Fin ) ) |
| 53 | 5 52 | sylcom | |- ( _om e. _V -> ( A ~< _om -> A e. Fin ) ) |
| 54 | 2 53 | mpcom | |- ( A ~< _om -> A e. Fin ) |