This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of Suppes p. 151. See unbnn3 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unbnn | |- ( ( _om e. _V /\ A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> A ~~ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg | |- ( _om e. _V -> ( A C_ _om -> A ~<_ _om ) ) |
|
| 2 | 1 | imp | |- ( ( _om e. _V /\ A C_ _om ) -> A ~<_ _om ) |
| 3 | 2 | 3adant3 | |- ( ( _om e. _V /\ A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> A ~<_ _om ) |
| 4 | simp1 | |- ( ( _om e. _V /\ A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> _om e. _V ) |
|
| 5 | ssexg | |- ( ( A C_ _om /\ _om e. _V ) -> A e. _V ) |
|
| 6 | 5 | ancoms | |- ( ( _om e. _V /\ A C_ _om ) -> A e. _V ) |
| 7 | 6 | 3adant3 | |- ( ( _om e. _V /\ A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> A e. _V ) |
| 8 | eqid | |- ( rec ( ( z e. _V |-> |^| ( A \ suc z ) ) , |^| A ) |` _om ) = ( rec ( ( z e. _V |-> |^| ( A \ suc z ) ) , |^| A ) |` _om ) |
|
| 9 | 8 | unblem4 | |- ( ( A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> ( rec ( ( z e. _V |-> |^| ( A \ suc z ) ) , |^| A ) |` _om ) : _om -1-1-> A ) |
| 10 | 9 | 3adant1 | |- ( ( _om e. _V /\ A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> ( rec ( ( z e. _V |-> |^| ( A \ suc z ) ) , |^| A ) |` _om ) : _om -1-1-> A ) |
| 11 | f1dom2g | |- ( ( _om e. _V /\ A e. _V /\ ( rec ( ( z e. _V |-> |^| ( A \ suc z ) ) , |^| A ) |` _om ) : _om -1-1-> A ) -> _om ~<_ A ) |
|
| 12 | 4 7 10 11 | syl3anc | |- ( ( _om e. _V /\ A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> _om ~<_ A ) |
| 13 | sbth | |- ( ( A ~<_ _om /\ _om ~<_ A ) -> A ~~ _om ) |
|
| 14 | 3 12 13 | syl2anc | |- ( ( _om e. _V /\ A C_ _om /\ A. x e. _om E. y e. A x e. y ) -> A ~~ _om ) |