This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunisssuc | |- ( ( A C_ On /\ Ord B ) -> ( U. A C_ B <-> A C_ suc B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel2 | |- ( ( A C_ On /\ x e. A ) -> x e. On ) |
|
| 2 | ordsssuc | |- ( ( x e. On /\ Ord B ) -> ( x C_ B <-> x e. suc B ) ) |
|
| 3 | 1 2 | sylan | |- ( ( ( A C_ On /\ x e. A ) /\ Ord B ) -> ( x C_ B <-> x e. suc B ) ) |
| 4 | 3 | an32s | |- ( ( ( A C_ On /\ Ord B ) /\ x e. A ) -> ( x C_ B <-> x e. suc B ) ) |
| 5 | 4 | ralbidva | |- ( ( A C_ On /\ Ord B ) -> ( A. x e. A x C_ B <-> A. x e. A x e. suc B ) ) |
| 6 | unissb | |- ( U. A C_ B <-> A. x e. A x C_ B ) |
|
| 7 | dfss3 | |- ( A C_ suc B <-> A. x e. A x e. suc B ) |
|
| 8 | 5 6 7 | 3bitr4g | |- ( ( A C_ On /\ Ord B ) -> ( U. A C_ B <-> A C_ suc B ) ) |