This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | isf34lem1 | |- ( ( A e. V /\ X C_ A ) -> ( F ` X ) = ( A \ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | difeq2 | |- ( x = a -> ( A \ x ) = ( A \ a ) ) |
|
| 3 | 2 | cbvmptv | |- ( x e. ~P A |-> ( A \ x ) ) = ( a e. ~P A |-> ( A \ a ) ) |
| 4 | 1 3 | eqtri | |- F = ( a e. ~P A |-> ( A \ a ) ) |
| 5 | difeq2 | |- ( a = X -> ( A \ a ) = ( A \ X ) ) |
|
| 6 | elpw2g | |- ( A e. V -> ( X e. ~P A <-> X C_ A ) ) |
|
| 7 | 6 | biimpar | |- ( ( A e. V /\ X C_ A ) -> X e. ~P A ) |
| 8 | difexg | |- ( A e. V -> ( A \ X ) e. _V ) |
|
| 9 | 8 | adantr | |- ( ( A e. V /\ X C_ A ) -> ( A \ X ) e. _V ) |
| 10 | 4 5 7 9 | fvmptd3 | |- ( ( A e. V /\ X C_ A ) -> ( F ` X ) = ( A \ X ) ) |