This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-4 . (Contributed by Stefan O'Rear, 7-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| Assertion | isf34lem3 | |- ( ( A e. V /\ X C_ ~P A ) -> ( F " ( F " X ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | compss.a | |- F = ( x e. ~P A |-> ( A \ x ) ) |
|
| 2 | 1 | compsscnv | |- `' F = F |
| 3 | 2 | imaeq1i | |- ( `' F " ( F " X ) ) = ( F " ( F " X ) ) |
| 4 | 1 | compssiso | |- ( A e. V -> F Isom [C.] , `' [C.] ( ~P A , ~P A ) ) |
| 5 | isof1o | |- ( F Isom [C.] , `' [C.] ( ~P A , ~P A ) -> F : ~P A -1-1-onto-> ~P A ) |
|
| 6 | f1of1 | |- ( F : ~P A -1-1-onto-> ~P A -> F : ~P A -1-1-> ~P A ) |
|
| 7 | 4 5 6 | 3syl | |- ( A e. V -> F : ~P A -1-1-> ~P A ) |
| 8 | f1imacnv | |- ( ( F : ~P A -1-1-> ~P A /\ X C_ ~P A ) -> ( `' F " ( F " X ) ) = X ) |
|
| 9 | 7 8 | sylan | |- ( ( A e. V /\ X C_ ~P A ) -> ( `' F " ( F " X ) ) = X ) |
| 10 | 3 9 | eqtr3id | |- ( ( A e. V /\ X C_ ~P A ) -> ( F " ( F " X ) ) = X ) |