This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference from isfin3-3 . (This is actually a bit stronger than isfin3-3 because it does not assume F is a set and does not use the Axiom of Infinity either.) (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin33i | |- ( ( A e. Fin3 /\ F : _om --> ~P A /\ A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) -> |^| ran F e. ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i | |- ( A e. Fin3 -> -. _om ~<_* A ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. Fin3 /\ F : _om --> ~P A /\ A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) -> -. _om ~<_* A ) |
| 3 | isf32lem11 | |- ( ( A e. Fin3 /\ ( F : _om --> ~P A /\ A. x e. _om ( F ` suc x ) C_ ( F ` x ) /\ -. |^| ran F e. ran F ) ) -> _om ~<_* A ) |
|
| 4 | 3 | 3exp2 | |- ( A e. Fin3 -> ( F : _om --> ~P A -> ( A. x e. _om ( F ` suc x ) C_ ( F ` x ) -> ( -. |^| ran F e. ran F -> _om ~<_* A ) ) ) ) |
| 5 | 4 | 3imp | |- ( ( A e. Fin3 /\ F : _om --> ~P A /\ A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) -> ( -. |^| ran F e. ran F -> _om ~<_* A ) ) |
| 6 | 2 5 | mt3d | |- ( ( A e. Fin3 /\ F : _om --> ~P A /\ A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) -> |^| ran F e. ran F ) |