This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Construction of the onto function. (Contributed by Stefan O'Rear, 5-Nov-2014) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
||
| isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
||
| isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
||
| isf32lem.g | |- L = ( t e. G |-> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) ) |
||
| Assertion | isf32lem9 | |- ( ph -> L : G -onto-> _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
|
| 5 | isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
|
| 6 | isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
|
| 7 | isf32lem.g | |- L = ( t e. G |-> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) ) |
|
| 8 | ssab2 | |- { s | ( s e. _om /\ t e. ( K ` s ) ) } C_ _om |
|
| 9 | iotacl | |- ( E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. { s | ( s e. _om /\ t e. ( K ` s ) ) } ) |
|
| 10 | 8 9 | sselid | |- ( E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om ) |
| 11 | iotanul | |- ( -. E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) = (/) ) |
|
| 12 | peano1 | |- (/) e. _om |
|
| 13 | 11 12 | eqeltrdi | |- ( -. E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om ) |
| 14 | 10 13 | pm2.61i | |- ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om |
| 15 | 14 | a1i | |- ( t e. G -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om ) |
| 16 | 7 15 | fmpti | |- L : G --> _om |
| 17 | 16 | a1i | |- ( ph -> L : G --> _om ) |
| 18 | 1 2 3 4 5 6 | isf32lem6 | |- ( ( ph /\ a e. _om ) -> ( K ` a ) =/= (/) ) |
| 19 | n0 | |- ( ( K ` a ) =/= (/) <-> E. b b e. ( K ` a ) ) |
|
| 20 | 18 19 | sylib | |- ( ( ph /\ a e. _om ) -> E. b b e. ( K ` a ) ) |
| 21 | 1 2 3 4 5 6 | isf32lem8 | |- ( ( ph /\ a e. _om ) -> ( K ` a ) C_ G ) |
| 22 | 21 | sselda | |- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> b e. G ) |
| 23 | eleq1w | |- ( t = b -> ( t e. ( K ` s ) <-> b e. ( K ` s ) ) ) |
|
| 24 | 23 | anbi2d | |- ( t = b -> ( ( s e. _om /\ t e. ( K ` s ) ) <-> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 25 | 24 | iotabidv | |- ( t = b -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) = ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 26 | iotaex | |- ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _V |
|
| 27 | 25 7 26 | fvmpt3i | |- ( b e. G -> ( L ` b ) = ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 28 | 22 27 | syl | |- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> ( L ` b ) = ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 29 | simp1r | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> b e. ( K ` a ) ) |
|
| 30 | simpl1 | |- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> ph ) |
|
| 31 | simpr | |- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> s =/= a ) |
|
| 32 | 31 | necomd | |- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> a =/= s ) |
| 33 | simpl2 | |- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> a e. _om ) |
|
| 34 | simpl3 | |- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> s e. _om ) |
|
| 35 | 1 2 3 4 5 6 | isf32lem7 | |- ( ( ( ph /\ a =/= s ) /\ ( a e. _om /\ s e. _om ) ) -> ( ( K ` a ) i^i ( K ` s ) ) = (/) ) |
| 36 | 30 32 33 34 35 | syl22anc | |- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> ( ( K ` a ) i^i ( K ` s ) ) = (/) ) |
| 37 | disj1 | |- ( ( ( K ` a ) i^i ( K ` s ) ) = (/) <-> A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) |
|
| 38 | 36 37 | sylib | |- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) |
| 39 | 38 | ex | |- ( ( ph /\ a e. _om /\ s e. _om ) -> ( s =/= a -> A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) ) |
| 40 | sp | |- ( A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) -> ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) |
|
| 41 | 39 40 | syl6 | |- ( ( ph /\ a e. _om /\ s e. _om ) -> ( s =/= a -> ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) ) |
| 42 | 41 | com23 | |- ( ( ph /\ a e. _om /\ s e. _om ) -> ( b e. ( K ` a ) -> ( s =/= a -> -. b e. ( K ` s ) ) ) ) |
| 43 | 42 | 3adant1r | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> ( b e. ( K ` a ) -> ( s =/= a -> -. b e. ( K ` s ) ) ) ) |
| 44 | 29 43 | mpd | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> ( s =/= a -> -. b e. ( K ` s ) ) ) |
| 45 | 44 | necon4ad | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> ( b e. ( K ` s ) -> s = a ) ) |
| 46 | 45 | 3expia | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( s e. _om -> ( b e. ( K ` s ) -> s = a ) ) ) |
| 47 | 46 | impd | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( ( s e. _om /\ b e. ( K ` s ) ) -> s = a ) ) |
| 48 | eleq1w | |- ( s = a -> ( s e. _om <-> a e. _om ) ) |
|
| 49 | fveq2 | |- ( s = a -> ( K ` s ) = ( K ` a ) ) |
|
| 50 | 49 | eleq2d | |- ( s = a -> ( b e. ( K ` s ) <-> b e. ( K ` a ) ) ) |
| 51 | 48 50 | anbi12d | |- ( s = a -> ( ( s e. _om /\ b e. ( K ` s ) ) <-> ( a e. _om /\ b e. ( K ` a ) ) ) ) |
| 52 | 51 | biimprcd | |- ( ( a e. _om /\ b e. ( K ` a ) ) -> ( s = a -> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 53 | 52 | ancoms | |- ( ( b e. ( K ` a ) /\ a e. _om ) -> ( s = a -> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 54 | 53 | adantll | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( s = a -> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 55 | 47 54 | impbid | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( ( s e. _om /\ b e. ( K ` s ) ) <-> s = a ) ) |
| 56 | 55 | iota5 | |- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) = a ) |
| 57 | 56 | an32s | |- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) = a ) |
| 58 | 28 57 | eqtr2d | |- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> a = ( L ` b ) ) |
| 59 | 22 58 | jca | |- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> ( b e. G /\ a = ( L ` b ) ) ) |
| 60 | 59 | ex | |- ( ( ph /\ a e. _om ) -> ( b e. ( K ` a ) -> ( b e. G /\ a = ( L ` b ) ) ) ) |
| 61 | 60 | eximdv | |- ( ( ph /\ a e. _om ) -> ( E. b b e. ( K ` a ) -> E. b ( b e. G /\ a = ( L ` b ) ) ) ) |
| 62 | df-rex | |- ( E. b e. G a = ( L ` b ) <-> E. b ( b e. G /\ a = ( L ` b ) ) ) |
|
| 63 | 61 62 | imbitrrdi | |- ( ( ph /\ a e. _om ) -> ( E. b b e. ( K ` a ) -> E. b e. G a = ( L ` b ) ) ) |
| 64 | 20 63 | mpd | |- ( ( ph /\ a e. _om ) -> E. b e. G a = ( L ` b ) ) |
| 65 | 64 | ralrimiva | |- ( ph -> A. a e. _om E. b e. G a = ( L ` b ) ) |
| 66 | dffo3 | |- ( L : G -onto-> _om <-> ( L : G --> _om /\ A. a e. _om E. b e. G a = ( L ` b ) ) ) |
|
| 67 | 17 65 66 | sylanbrc | |- ( ph -> L : G -onto-> _om ) |