This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 8.23 in Quine p. 58. This theorem proves the existence of the iota class under our definition. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotaex | |- ( iota x ph ) e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotaval2 | |- ( { x | ph } = { y } -> ( iota x ph ) = y ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | eqeltrdi | |- ( { x | ph } = { y } -> ( iota x ph ) e. _V ) |
| 4 | 3 | exlimiv | |- ( E. y { x | ph } = { y } -> ( iota x ph ) e. _V ) |
| 5 | iotanul2 | |- ( -. E. y { x | ph } = { y } -> ( iota x ph ) = (/) ) |
|
| 6 | 0ex | |- (/) e. _V |
|
| 7 | 5 6 | eqeltrdi | |- ( -. E. y { x | ph } = { y } -> ( iota x ph ) e. _V ) |
| 8 | 4 7 | pm2.61i | |- ( iota x ph ) e. _V |