This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iota5.1 | |- ( ( ph /\ A e. V ) -> ( ps <-> x = A ) ) |
|
| Assertion | iota5 | |- ( ( ph /\ A e. V ) -> ( iota x ps ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota5.1 | |- ( ( ph /\ A e. V ) -> ( ps <-> x = A ) ) |
|
| 2 | 1 | alrimiv | |- ( ( ph /\ A e. V ) -> A. x ( ps <-> x = A ) ) |
| 3 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 4 | 3 | bibi2d | |- ( y = A -> ( ( ps <-> x = y ) <-> ( ps <-> x = A ) ) ) |
| 5 | 4 | albidv | |- ( y = A -> ( A. x ( ps <-> x = y ) <-> A. x ( ps <-> x = A ) ) ) |
| 6 | eqeq2 | |- ( y = A -> ( ( iota x ps ) = y <-> ( iota x ps ) = A ) ) |
|
| 7 | 5 6 | imbi12d | |- ( y = A -> ( ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y ) <-> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) ) |
| 8 | iotaval | |- ( A. x ( ps <-> x = y ) -> ( iota x ps ) = y ) |
|
| 9 | 7 8 | vtoclg | |- ( A e. V -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) |
| 10 | 9 | adantl | |- ( ( ph /\ A e. V ) -> ( A. x ( ps <-> x = A ) -> ( iota x ps ) = A ) ) |
| 11 | 2 10 | mpd | |- ( ( ph /\ A e. V ) -> ( iota x ps ) = A ) |