This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 8.22 in Quine p. 57. This theorem is the result if there isn't exactly one x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotanul | |- ( -. E! x ph -> ( iota x ph ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 | |- ( E! x ph <-> E. z A. x ( ph <-> x = z ) ) |
|
| 2 | dfiota2 | |- ( iota x ph ) = U. { z | A. x ( ph <-> x = z ) } |
|
| 3 | alnex | |- ( A. z -. A. x ( ph <-> x = z ) <-> -. E. z A. x ( ph <-> x = z ) ) |
|
| 4 | dfnul2 | |- (/) = { z | -. z = z } |
|
| 5 | equid | |- z = z |
|
| 6 | 5 | tbt | |- ( -. A. x ( ph <-> x = z ) <-> ( -. A. x ( ph <-> x = z ) <-> z = z ) ) |
| 7 | 6 | biimpi | |- ( -. A. x ( ph <-> x = z ) -> ( -. A. x ( ph <-> x = z ) <-> z = z ) ) |
| 8 | 7 | con1bid | |- ( -. A. x ( ph <-> x = z ) -> ( -. z = z <-> A. x ( ph <-> x = z ) ) ) |
| 9 | 8 | alimi | |- ( A. z -. A. x ( ph <-> x = z ) -> A. z ( -. z = z <-> A. x ( ph <-> x = z ) ) ) |
| 10 | abbi | |- ( A. z ( -. z = z <-> A. x ( ph <-> x = z ) ) -> { z | -. z = z } = { z | A. x ( ph <-> x = z ) } ) |
|
| 11 | 9 10 | syl | |- ( A. z -. A. x ( ph <-> x = z ) -> { z | -. z = z } = { z | A. x ( ph <-> x = z ) } ) |
| 12 | 4 11 | eqtr2id | |- ( A. z -. A. x ( ph <-> x = z ) -> { z | A. x ( ph <-> x = z ) } = (/) ) |
| 13 | 3 12 | sylbir | |- ( -. E. z A. x ( ph <-> x = z ) -> { z | A. x ( ph <-> x = z ) } = (/) ) |
| 14 | 13 | unieqd | |- ( -. E. z A. x ( ph <-> x = z ) -> U. { z | A. x ( ph <-> x = z ) } = U. (/) ) |
| 15 | uni0 | |- U. (/) = (/) |
|
| 16 | 14 15 | eqtrdi | |- ( -. E. z A. x ( ph <-> x = z ) -> U. { z | A. x ( ph <-> x = z ) } = (/) ) |
| 17 | 2 16 | eqtrid | |- ( -. E. z A. x ( ph <-> x = z ) -> ( iota x ph ) = (/) ) |
| 18 | 1 17 | sylnbi | |- ( -. E! x ph -> ( iota x ph ) = (/) ) |