This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
||
| isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
||
| isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
||
| Assertion | isf32lem8 | |- ( ( ph /\ A e. _om ) -> ( K ` A ) C_ G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
|
| 5 | isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
|
| 6 | isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
|
| 7 | 6 | fveq1i | |- ( K ` A ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) |
| 8 | 4 | ssrab3 | |- S C_ _om |
| 9 | 1 2 3 4 | isf32lem5 | |- ( ph -> -. S e. Fin ) |
| 10 | 5 | fin23lem22 | |- ( ( S C_ _om /\ -. S e. Fin ) -> J : _om -1-1-onto-> S ) |
| 11 | 8 9 10 | sylancr | |- ( ph -> J : _om -1-1-onto-> S ) |
| 12 | f1of | |- ( J : _om -1-1-onto-> S -> J : _om --> S ) |
|
| 13 | 11 12 | syl | |- ( ph -> J : _om --> S ) |
| 14 | fvco3 | |- ( ( J : _om --> S /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
|
| 15 | 13 14 | sylan | |- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
| 16 | 13 | ffvelcdmda | |- ( ( ph /\ A e. _om ) -> ( J ` A ) e. S ) |
| 17 | fveq2 | |- ( w = ( J ` A ) -> ( F ` w ) = ( F ` ( J ` A ) ) ) |
|
| 18 | suceq | |- ( w = ( J ` A ) -> suc w = suc ( J ` A ) ) |
|
| 19 | 18 | fveq2d | |- ( w = ( J ` A ) -> ( F ` suc w ) = ( F ` suc ( J ` A ) ) ) |
| 20 | 17 19 | difeq12d | |- ( w = ( J ` A ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 21 | eqid | |- ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) = ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) |
|
| 22 | fvex | |- ( F ` ( J ` A ) ) e. _V |
|
| 23 | 22 | difexi | |- ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) e. _V |
| 24 | 20 21 23 | fvmpt | |- ( ( J ` A ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 25 | 16 24 | syl | |- ( ( ph /\ A e. _om ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 26 | 15 25 | eqtrd | |- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 27 | 7 26 | eqtrid | |- ( ( ph /\ A e. _om ) -> ( K ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 28 | 1 | adantr | |- ( ( ph /\ A e. _om ) -> F : _om --> ~P G ) |
| 29 | 8 16 | sselid | |- ( ( ph /\ A e. _om ) -> ( J ` A ) e. _om ) |
| 30 | 28 29 | ffvelcdmd | |- ( ( ph /\ A e. _om ) -> ( F ` ( J ` A ) ) e. ~P G ) |
| 31 | 30 | elpwid | |- ( ( ph /\ A e. _om ) -> ( F ` ( J ` A ) ) C_ G ) |
| 32 | 31 | ssdifssd | |- ( ( ph /\ A e. _om ) -> ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) C_ G ) |
| 33 | 27 32 | eqsstrd | |- ( ( ph /\ A e. _om ) -> ( K ` A ) C_ G ) |