This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
||
| isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
||
| isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
||
| Assertion | isf32lem7 | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
|
| 5 | isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
|
| 6 | isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
|
| 7 | 6 | fveq1i | |- ( K ` A ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) |
| 8 | 4 | ssrab3 | |- S C_ _om |
| 9 | 1 2 3 4 | isf32lem5 | |- ( ph -> -. S e. Fin ) |
| 10 | 5 | fin23lem22 | |- ( ( S C_ _om /\ -. S e. Fin ) -> J : _om -1-1-onto-> S ) |
| 11 | 8 9 10 | sylancr | |- ( ph -> J : _om -1-1-onto-> S ) |
| 12 | f1of | |- ( J : _om -1-1-onto-> S -> J : _om --> S ) |
|
| 13 | 11 12 | syl | |- ( ph -> J : _om --> S ) |
| 14 | fvco3 | |- ( ( J : _om --> S /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
|
| 15 | 13 14 | sylan | |- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
| 16 | 15 | ad2ant2r | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
| 17 | 13 | adantr | |- ( ( ph /\ A =/= B ) -> J : _om --> S ) |
| 18 | simpl | |- ( ( A e. _om /\ B e. _om ) -> A e. _om ) |
|
| 19 | ffvelcdm | |- ( ( J : _om --> S /\ A e. _om ) -> ( J ` A ) e. S ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) e. S ) |
| 21 | fveq2 | |- ( w = ( J ` A ) -> ( F ` w ) = ( F ` ( J ` A ) ) ) |
|
| 22 | suceq | |- ( w = ( J ` A ) -> suc w = suc ( J ` A ) ) |
|
| 23 | 22 | fveq2d | |- ( w = ( J ` A ) -> ( F ` suc w ) = ( F ` suc ( J ` A ) ) ) |
| 24 | 21 23 | difeq12d | |- ( w = ( J ` A ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 25 | eqid | |- ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) = ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) |
|
| 26 | fvex | |- ( F ` ( J ` A ) ) e. _V |
|
| 27 | 26 | difexi | |- ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) e. _V |
| 28 | 24 25 27 | fvmpt | |- ( ( J ` A ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 29 | 20 28 | syl | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 30 | 16 29 | eqtrd | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 31 | 7 30 | eqtrid | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( K ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 32 | 6 | fveq1i | |- ( K ` B ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) |
| 33 | fvco3 | |- ( ( J : _om --> S /\ B e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) ) |
|
| 34 | 13 33 | sylan | |- ( ( ph /\ B e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) ) |
| 35 | 34 | ad2ant2rl | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) ) |
| 36 | simpr | |- ( ( A e. _om /\ B e. _om ) -> B e. _om ) |
|
| 37 | ffvelcdm | |- ( ( J : _om --> S /\ B e. _om ) -> ( J ` B ) e. S ) |
|
| 38 | 17 36 37 | syl2an | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` B ) e. S ) |
| 39 | fveq2 | |- ( w = ( J ` B ) -> ( F ` w ) = ( F ` ( J ` B ) ) ) |
|
| 40 | suceq | |- ( w = ( J ` B ) -> suc w = suc ( J ` B ) ) |
|
| 41 | 40 | fveq2d | |- ( w = ( J ` B ) -> ( F ` suc w ) = ( F ` suc ( J ` B ) ) ) |
| 42 | 39 41 | difeq12d | |- ( w = ( J ` B ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 43 | fvex | |- ( F ` ( J ` B ) ) e. _V |
|
| 44 | 43 | difexi | |- ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) e. _V |
| 45 | 42 25 44 | fvmpt | |- ( ( J ` B ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 46 | 38 45 | syl | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` B ) ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 47 | 35 46 | eqtrd | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` B ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 48 | 32 47 | eqtrid | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( K ` B ) = ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) |
| 49 | 31 48 | ineq12d | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) ) |
| 50 | simpll | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ph ) |
|
| 51 | simplr | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> A =/= B ) |
|
| 52 | f1of1 | |- ( J : _om -1-1-onto-> S -> J : _om -1-1-> S ) |
|
| 53 | 11 52 | syl | |- ( ph -> J : _om -1-1-> S ) |
| 54 | 53 | adantr | |- ( ( ph /\ A =/= B ) -> J : _om -1-1-> S ) |
| 55 | f1fveq | |- ( ( J : _om -1-1-> S /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) <-> A = B ) ) |
|
| 56 | 54 55 | sylan | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) <-> A = B ) ) |
| 57 | 56 | biimpd | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( J ` A ) = ( J ` B ) -> A = B ) ) |
| 58 | 57 | necon3d | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( A =/= B -> ( J ` A ) =/= ( J ` B ) ) ) |
| 59 | 51 58 | mpd | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) =/= ( J ` B ) ) |
| 60 | 8 20 | sselid | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` A ) e. _om ) |
| 61 | 8 38 | sselid | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( J ` B ) e. _om ) |
| 62 | 1 2 3 | isf32lem4 | |- ( ( ( ph /\ ( J ` A ) =/= ( J ` B ) ) /\ ( ( J ` A ) e. _om /\ ( J ` B ) e. _om ) ) -> ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) = (/) ) |
| 63 | 50 59 60 61 62 | syl22anc | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) i^i ( ( F ` ( J ` B ) ) \ ( F ` suc ( J ` B ) ) ) ) = (/) ) |
| 64 | 49 63 | eqtrd | |- ( ( ( ph /\ A =/= B ) /\ ( A e. _om /\ B e. _om ) ) -> ( ( K ` A ) i^i ( K ` B ) ) = (/) ) |