This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
||
| isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
||
| isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
||
| isf32lem.g | |- L = ( t e. G |-> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) ) |
||
| Assertion | isf32lem10 | |- ( ph -> ( G e. V -> _om ~<_* G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
|
| 5 | isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
|
| 6 | isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
|
| 7 | isf32lem.g | |- L = ( t e. G |-> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) ) |
|
| 8 | 1 2 3 4 5 6 7 | isf32lem9 | |- ( ph -> L : G -onto-> _om ) |
| 9 | fof | |- ( L : G -onto-> _om -> L : G --> _om ) |
|
| 10 | 8 9 | syl | |- ( ph -> L : G --> _om ) |
| 11 | fex | |- ( ( L : G --> _om /\ G e. V ) -> L e. _V ) |
|
| 12 | 10 11 | sylan | |- ( ( ph /\ G e. V ) -> L e. _V ) |
| 13 | 12 | ex | |- ( ph -> ( G e. V -> L e. _V ) ) |
| 14 | fowdom | |- ( ( L e. _V /\ L : G -onto-> _om ) -> _om ~<_* G ) |
|
| 15 | 14 | expcom | |- ( L : G -onto-> _om -> ( L e. _V -> _om ~<_* G ) ) |
| 16 | 8 13 15 | sylsyld | |- ( ph -> ( G e. V -> _om ~<_* G ) ) |