This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Each K value is nonempty. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
||
| isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
||
| isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
||
| Assertion | isf32lem6 | |- ( ( ph /\ A e. _om ) -> ( K ` A ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | isf32lem.d | |- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
|
| 5 | isf32lem.e | |- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
|
| 6 | isf32lem.f | |- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
|
| 7 | 6 | fveq1i | |- ( K ` A ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) |
| 8 | 4 | ssrab3 | |- S C_ _om |
| 9 | 1 2 3 4 | isf32lem5 | |- ( ph -> -. S e. Fin ) |
| 10 | 5 | fin23lem22 | |- ( ( S C_ _om /\ -. S e. Fin ) -> J : _om -1-1-onto-> S ) |
| 11 | 8 9 10 | sylancr | |- ( ph -> J : _om -1-1-onto-> S ) |
| 12 | f1of | |- ( J : _om -1-1-onto-> S -> J : _om --> S ) |
|
| 13 | 11 12 | syl | |- ( ph -> J : _om --> S ) |
| 14 | fvco3 | |- ( ( J : _om --> S /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
|
| 15 | 13 14 | sylan | |- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
| 16 | 9 | adantr | |- ( ( ph /\ A e. _om ) -> -. S e. Fin ) |
| 17 | 8 16 10 | sylancr | |- ( ( ph /\ A e. _om ) -> J : _om -1-1-onto-> S ) |
| 18 | 17 12 | syl | |- ( ( ph /\ A e. _om ) -> J : _om --> S ) |
| 19 | ffvelcdm | |- ( ( J : _om --> S /\ A e. _om ) -> ( J ` A ) e. S ) |
|
| 20 | 18 19 | sylancom | |- ( ( ph /\ A e. _om ) -> ( J ` A ) e. S ) |
| 21 | fveq2 | |- ( w = ( J ` A ) -> ( F ` w ) = ( F ` ( J ` A ) ) ) |
|
| 22 | suceq | |- ( w = ( J ` A ) -> suc w = suc ( J ` A ) ) |
|
| 23 | 22 | fveq2d | |- ( w = ( J ` A ) -> ( F ` suc w ) = ( F ` suc ( J ` A ) ) ) |
| 24 | 21 23 | difeq12d | |- ( w = ( J ` A ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 25 | eqid | |- ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) = ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) |
|
| 26 | fvex | |- ( F ` ( J ` A ) ) e. _V |
|
| 27 | 26 | difexi | |- ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) e. _V |
| 28 | 24 25 27 | fvmpt | |- ( ( J ` A ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 29 | 20 28 | syl | |- ( ( ph /\ A e. _om ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 30 | 15 29 | eqtrd | |- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 31 | 7 30 | eqtrid | |- ( ( ph /\ A e. _om ) -> ( K ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
| 32 | suceq | |- ( y = ( J ` A ) -> suc y = suc ( J ` A ) ) |
|
| 33 | 32 | fveq2d | |- ( y = ( J ` A ) -> ( F ` suc y ) = ( F ` suc ( J ` A ) ) ) |
| 34 | fveq2 | |- ( y = ( J ` A ) -> ( F ` y ) = ( F ` ( J ` A ) ) ) |
|
| 35 | 33 34 | psseq12d | |- ( y = ( J ` A ) -> ( ( F ` suc y ) C. ( F ` y ) <-> ( F ` suc ( J ` A ) ) C. ( F ` ( J ` A ) ) ) ) |
| 36 | 35 4 | elrab2 | |- ( ( J ` A ) e. S <-> ( ( J ` A ) e. _om /\ ( F ` suc ( J ` A ) ) C. ( F ` ( J ` A ) ) ) ) |
| 37 | 36 | simprbi | |- ( ( J ` A ) e. S -> ( F ` suc ( J ` A ) ) C. ( F ` ( J ` A ) ) ) |
| 38 | 20 37 | syl | |- ( ( ph /\ A e. _om ) -> ( F ` suc ( J ` A ) ) C. ( F ` ( J ` A ) ) ) |
| 39 | df-pss | |- ( ( F ` suc ( J ` A ) ) C. ( F ` ( J ` A ) ) <-> ( ( F ` suc ( J ` A ) ) C_ ( F ` ( J ` A ) ) /\ ( F ` suc ( J ` A ) ) =/= ( F ` ( J ` A ) ) ) ) |
|
| 40 | 38 39 | sylib | |- ( ( ph /\ A e. _om ) -> ( ( F ` suc ( J ` A ) ) C_ ( F ` ( J ` A ) ) /\ ( F ` suc ( J ` A ) ) =/= ( F ` ( J ` A ) ) ) ) |
| 41 | pssdifn0 | |- ( ( ( F ` suc ( J ` A ) ) C_ ( F ` ( J ` A ) ) /\ ( F ` suc ( J ` A ) ) =/= ( F ` ( J ` A ) ) ) -> ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) =/= (/) ) |
|
| 42 | 40 41 | syl | |- ( ( ph /\ A e. _om ) -> ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) =/= (/) ) |
| 43 | 31 42 | eqnetrd | |- ( ( ph /\ A e. _om ) -> ( K ` A ) =/= (/) ) |