This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Non-minimum implies that there is always another decrease. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| Assertion | isf32lem2 | |- ( ( ph /\ A e. _om ) -> E. a e. _om ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | 3 | adantr | |- ( ( ph /\ A e. _om ) -> -. |^| ran F e. ran F ) |
| 5 | 1 | ffnd | |- ( ph -> F Fn _om ) |
| 6 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 7 | fnfvelrn | |- ( ( F Fn _om /\ suc A e. _om ) -> ( F ` suc A ) e. ran F ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( ph /\ A e. _om ) -> ( F ` suc A ) e. ran F ) |
| 9 | 8 | adantr | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( F ` suc A ) e. ran F ) |
| 10 | intss1 | |- ( ( F ` suc A ) e. ran F -> |^| ran F C_ ( F ` suc A ) ) |
|
| 11 | 9 10 | syl | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> |^| ran F C_ ( F ` suc A ) ) |
| 12 | fvelrnb | |- ( F Fn _om -> ( b e. ran F <-> E. c e. _om ( F ` c ) = b ) ) |
|
| 13 | 5 12 | syl | |- ( ph -> ( b e. ran F <-> E. c e. _om ( F ` c ) = b ) ) |
| 14 | 13 | ad2antrr | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( b e. ran F <-> E. c e. _om ( F ` c ) = b ) ) |
| 15 | simplrr | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> c e. _om ) |
|
| 16 | 6 | ad3antlr | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> suc A e. _om ) |
| 17 | simpr | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> suc A C_ c ) |
|
| 18 | simplrl | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
|
| 19 | fveq2 | |- ( b = suc A -> ( F ` b ) = ( F ` suc A ) ) |
|
| 20 | 19 | eqeq2d | |- ( b = suc A -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` suc A ) ) ) |
| 21 | 20 | imbi2d | |- ( b = suc A -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc A ) ) ) ) |
| 22 | fveq2 | |- ( b = d -> ( F ` b ) = ( F ` d ) ) |
|
| 23 | 22 | eqeq2d | |- ( b = d -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` d ) ) ) |
| 24 | 23 | imbi2d | |- ( b = d -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` d ) ) ) ) |
| 25 | fveq2 | |- ( b = suc d -> ( F ` b ) = ( F ` suc d ) ) |
|
| 26 | 25 | eqeq2d | |- ( b = suc d -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` suc d ) ) ) |
| 27 | 26 | imbi2d | |- ( b = suc d -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc d ) ) ) ) |
| 28 | fveq2 | |- ( b = c -> ( F ` b ) = ( F ` c ) ) |
|
| 29 | 28 | eqeq2d | |- ( b = c -> ( ( F ` suc A ) = ( F ` b ) <-> ( F ` suc A ) = ( F ` c ) ) ) |
| 30 | 29 | imbi2d | |- ( b = c -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` b ) ) <-> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` c ) ) ) ) |
| 31 | eqid | |- ( F ` suc A ) = ( F ` suc A ) |
|
| 32 | 31 | 2a1i | |- ( suc A e. _om -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc A ) ) ) |
| 33 | elex | |- ( suc A e. _om -> suc A e. _V ) |
|
| 34 | sucexb | |- ( A e. _V <-> suc A e. _V ) |
|
| 35 | 33 34 | sylibr | |- ( suc A e. _om -> A e. _V ) |
| 36 | 35 | adantl | |- ( ( d e. _om /\ suc A e. _om ) -> A e. _V ) |
| 37 | sucssel | |- ( A e. _V -> ( suc A C_ d -> A e. d ) ) |
|
| 38 | 36 37 | syl | |- ( ( d e. _om /\ suc A e. _om ) -> ( suc A C_ d -> A e. d ) ) |
| 39 | 38 | imp | |- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> A e. d ) |
| 40 | eleq2w | |- ( a = d -> ( A e. a <-> A e. d ) ) |
|
| 41 | suceq | |- ( a = d -> suc a = suc d ) |
|
| 42 | 41 | fveq2d | |- ( a = d -> ( F ` suc a ) = ( F ` suc d ) ) |
| 43 | fveq2 | |- ( a = d -> ( F ` a ) = ( F ` d ) ) |
|
| 44 | 42 43 | eqeq12d | |- ( a = d -> ( ( F ` suc a ) = ( F ` a ) <-> ( F ` suc d ) = ( F ` d ) ) ) |
| 45 | 40 44 | imbi12d | |- ( a = d -> ( ( A e. a -> ( F ` suc a ) = ( F ` a ) ) <-> ( A e. d -> ( F ` suc d ) = ( F ` d ) ) ) ) |
| 46 | 45 | rspcv | |- ( d e. _om -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. d -> ( F ` suc d ) = ( F ` d ) ) ) ) |
| 47 | 46 | com23 | |- ( d e. _om -> ( A e. d -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc d ) = ( F ` d ) ) ) ) |
| 48 | 47 | ad2antrr | |- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( A e. d -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc d ) = ( F ` d ) ) ) ) |
| 49 | 39 48 | mpd | |- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc d ) = ( F ` d ) ) ) |
| 50 | eqtr3 | |- ( ( ( F ` suc A ) = ( F ` d ) /\ ( F ` suc d ) = ( F ` d ) ) -> ( F ` suc A ) = ( F ` suc d ) ) |
|
| 51 | 50 | expcom | |- ( ( F ` suc d ) = ( F ` d ) -> ( ( F ` suc A ) = ( F ` d ) -> ( F ` suc A ) = ( F ` suc d ) ) ) |
| 52 | 49 51 | syl6 | |- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( ( F ` suc A ) = ( F ` d ) -> ( F ` suc A ) = ( F ` suc d ) ) ) ) |
| 53 | 52 | a2d | |- ( ( ( d e. _om /\ suc A e. _om ) /\ suc A C_ d ) -> ( ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` d ) ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` suc d ) ) ) ) |
| 54 | 21 24 27 30 32 53 | findsg | |- ( ( ( c e. _om /\ suc A e. _om ) /\ suc A C_ c ) -> ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( F ` suc A ) = ( F ` c ) ) ) |
| 55 | 54 | impr | |- ( ( ( c e. _om /\ suc A e. _om ) /\ ( suc A C_ c /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) ) -> ( F ` suc A ) = ( F ` c ) ) |
| 56 | 15 16 17 18 55 | syl22anc | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> ( F ` suc A ) = ( F ` c ) ) |
| 57 | eqimss | |- ( ( F ` suc A ) = ( F ` c ) -> ( F ` suc A ) C_ ( F ` c ) ) |
|
| 58 | 56 57 | syl | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ suc A C_ c ) -> ( F ` suc A ) C_ ( F ` c ) ) |
| 59 | 6 | ad3antlr | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> suc A e. _om ) |
| 60 | simplrr | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> c e. _om ) |
|
| 61 | simpr | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> c C_ suc A ) |
|
| 62 | simplll | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> ph ) |
|
| 63 | 1 2 3 | isf32lem1 | |- ( ( ( suc A e. _om /\ c e. _om ) /\ ( c C_ suc A /\ ph ) ) -> ( F ` suc A ) C_ ( F ` c ) ) |
| 64 | 59 60 61 62 63 | syl22anc | |- ( ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) /\ c C_ suc A ) -> ( F ` suc A ) C_ ( F ` c ) ) |
| 65 | nnord | |- ( suc A e. _om -> Ord suc A ) |
|
| 66 | 6 65 | syl | |- ( A e. _om -> Ord suc A ) |
| 67 | 66 | ad2antlr | |- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> Ord suc A ) |
| 68 | nnord | |- ( c e. _om -> Ord c ) |
|
| 69 | 68 | ad2antll | |- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> Ord c ) |
| 70 | ordtri2or2 | |- ( ( Ord suc A /\ Ord c ) -> ( suc A C_ c \/ c C_ suc A ) ) |
|
| 71 | 67 69 70 | syl2anc | |- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> ( suc A C_ c \/ c C_ suc A ) ) |
| 72 | 58 64 71 | mpjaodan | |- ( ( ( ph /\ A e. _om ) /\ ( A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) /\ c e. _om ) ) -> ( F ` suc A ) C_ ( F ` c ) ) |
| 73 | 72 | anassrs | |- ( ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) /\ c e. _om ) -> ( F ` suc A ) C_ ( F ` c ) ) |
| 74 | sseq2 | |- ( ( F ` c ) = b -> ( ( F ` suc A ) C_ ( F ` c ) <-> ( F ` suc A ) C_ b ) ) |
|
| 75 | 73 74 | syl5ibcom | |- ( ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) /\ c e. _om ) -> ( ( F ` c ) = b -> ( F ` suc A ) C_ b ) ) |
| 76 | 75 | rexlimdva | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( E. c e. _om ( F ` c ) = b -> ( F ` suc A ) C_ b ) ) |
| 77 | 14 76 | sylbid | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( b e. ran F -> ( F ` suc A ) C_ b ) ) |
| 78 | 77 | ralrimiv | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> A. b e. ran F ( F ` suc A ) C_ b ) |
| 79 | ssint | |- ( ( F ` suc A ) C_ |^| ran F <-> A. b e. ran F ( F ` suc A ) C_ b ) |
|
| 80 | 78 79 | sylibr | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> ( F ` suc A ) C_ |^| ran F ) |
| 81 | 11 80 | eqssd | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> |^| ran F = ( F ` suc A ) ) |
| 82 | 81 9 | eqeltrd | |- ( ( ( ph /\ A e. _om ) /\ A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) -> |^| ran F e. ran F ) |
| 83 | 4 82 | mtand | |- ( ( ph /\ A e. _om ) -> -. A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
| 84 | rexnal | |- ( E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) <-> -. A. a e. _om ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
|
| 85 | 83 84 | sylibr | |- ( ( ph /\ A e. _om ) -> E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) ) |
| 86 | suceq | |- ( x = a -> suc x = suc a ) |
|
| 87 | 86 | fveq2d | |- ( x = a -> ( F ` suc x ) = ( F ` suc a ) ) |
| 88 | fveq2 | |- ( x = a -> ( F ` x ) = ( F ` a ) ) |
|
| 89 | 87 88 | sseq12d | |- ( x = a -> ( ( F ` suc x ) C_ ( F ` x ) <-> ( F ` suc a ) C_ ( F ` a ) ) ) |
| 90 | 89 | cbvralvw | |- ( A. x e. _om ( F ` suc x ) C_ ( F ` x ) <-> A. a e. _om ( F ` suc a ) C_ ( F ` a ) ) |
| 91 | 2 90 | sylib | |- ( ph -> A. a e. _om ( F ` suc a ) C_ ( F ` a ) ) |
| 92 | 91 | adantr | |- ( ( ph /\ A e. _om ) -> A. a e. _om ( F ` suc a ) C_ ( F ` a ) ) |
| 93 | pm4.61 | |- ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) <-> ( A e. a /\ -. ( F ` suc a ) = ( F ` a ) ) ) |
|
| 94 | dfpss2 | |- ( ( F ` suc a ) C. ( F ` a ) <-> ( ( F ` suc a ) C_ ( F ` a ) /\ -. ( F ` suc a ) = ( F ` a ) ) ) |
|
| 95 | 94 | simplbi2 | |- ( ( F ` suc a ) C_ ( F ` a ) -> ( -. ( F ` suc a ) = ( F ` a ) -> ( F ` suc a ) C. ( F ` a ) ) ) |
| 96 | 95 | anim2d | |- ( ( F ` suc a ) C_ ( F ` a ) -> ( ( A e. a /\ -. ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
| 97 | 93 96 | biimtrid | |- ( ( F ` suc a ) C_ ( F ` a ) -> ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
| 98 | 97 | ralimi | |- ( A. a e. _om ( F ` suc a ) C_ ( F ` a ) -> A. a e. _om ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
| 99 | rexim | |- ( A. a e. _om ( -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) -> ( E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> E. a e. _om ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
|
| 100 | 92 98 99 | 3syl | |- ( ( ph /\ A e. _om ) -> ( E. a e. _om -. ( A e. a -> ( F ` suc a ) = ( F ` a ) ) -> E. a e. _om ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) ) |
| 101 | 85 100 | mpd | |- ( ( ph /\ A e. _om ) -> E. a e. _om ( A e. a /\ ( F ` suc a ) C. ( F ` a ) ) ) |