This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| Assertion | isf32lem1 | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B C_ A /\ ph ) ) -> ( F ` A ) C_ ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | fveq2 | |- ( a = B -> ( F ` a ) = ( F ` B ) ) |
|
| 5 | 4 | sseq1d | |- ( a = B -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` B ) C_ ( F ` B ) ) ) |
| 6 | 5 | imbi2d | |- ( a = B -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` B ) C_ ( F ` B ) ) ) ) |
| 7 | fveq2 | |- ( a = b -> ( F ` a ) = ( F ` b ) ) |
|
| 8 | 7 | sseq1d | |- ( a = b -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` b ) C_ ( F ` B ) ) ) |
| 9 | 8 | imbi2d | |- ( a = b -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` b ) C_ ( F ` B ) ) ) ) |
| 10 | fveq2 | |- ( a = suc b -> ( F ` a ) = ( F ` suc b ) ) |
|
| 11 | 10 | sseq1d | |- ( a = suc b -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` suc b ) C_ ( F ` B ) ) ) |
| 12 | 11 | imbi2d | |- ( a = suc b -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` suc b ) C_ ( F ` B ) ) ) ) |
| 13 | fveq2 | |- ( a = A -> ( F ` a ) = ( F ` A ) ) |
|
| 14 | 13 | sseq1d | |- ( a = A -> ( ( F ` a ) C_ ( F ` B ) <-> ( F ` A ) C_ ( F ` B ) ) ) |
| 15 | 14 | imbi2d | |- ( a = A -> ( ( ph -> ( F ` a ) C_ ( F ` B ) ) <-> ( ph -> ( F ` A ) C_ ( F ` B ) ) ) ) |
| 16 | ssid | |- ( F ` B ) C_ ( F ` B ) |
|
| 17 | 16 | 2a1i | |- ( B e. _om -> ( ph -> ( F ` B ) C_ ( F ` B ) ) ) |
| 18 | suceq | |- ( x = b -> suc x = suc b ) |
|
| 19 | 18 | fveq2d | |- ( x = b -> ( F ` suc x ) = ( F ` suc b ) ) |
| 20 | fveq2 | |- ( x = b -> ( F ` x ) = ( F ` b ) ) |
|
| 21 | 19 20 | sseq12d | |- ( x = b -> ( ( F ` suc x ) C_ ( F ` x ) <-> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 22 | 21 | rspcv | |- ( b e. _om -> ( A. x e. _om ( F ` suc x ) C_ ( F ` x ) -> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 23 | 2 22 | syl5 | |- ( b e. _om -> ( ph -> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 24 | 23 | ad2antrr | |- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ph -> ( F ` suc b ) C_ ( F ` b ) ) ) |
| 25 | sstr2 | |- ( ( F ` suc b ) C_ ( F ` b ) -> ( ( F ` b ) C_ ( F ` B ) -> ( F ` suc b ) C_ ( F ` B ) ) ) |
|
| 26 | 24 25 | syl6 | |- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ph -> ( ( F ` b ) C_ ( F ` B ) -> ( F ` suc b ) C_ ( F ` B ) ) ) ) |
| 27 | 26 | a2d | |- ( ( ( b e. _om /\ B e. _om ) /\ B C_ b ) -> ( ( ph -> ( F ` b ) C_ ( F ` B ) ) -> ( ph -> ( F ` suc b ) C_ ( F ` B ) ) ) ) |
| 28 | 6 9 12 15 17 27 | findsg | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( ph -> ( F ` A ) C_ ( F ` B ) ) ) |
| 29 | 28 | impr | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B C_ A /\ ph ) ) -> ( F ` A ) C_ ( F ` B ) ) |