This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pm4.61

Description: Theorem *4.61 of WhiteheadRussell p. 120. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm4.61
|- ( -. ( ph -> ps ) <-> ( ph /\ -. ps ) )

Proof

Step Hyp Ref Expression
1 annim
 |-  ( ( ph /\ -. ps ) <-> -. ( ph -> ps ) )
2 1 bicomi
 |-  ( -. ( ph -> ps ) <-> ( ph /\ -. ps ) )