This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Non-minimum implies that there is always another decrease. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | ||
| isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | ||
| Assertion | isf32lem2 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ∃ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | ⊢ ( 𝜑 → 𝐹 : ω ⟶ 𝒫 𝐺 ) | |
| 2 | isf32lem.b | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) | |
| 3 | isf32lem.c | ⊢ ( 𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) |
| 5 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ω ) |
| 6 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 7 | fnfvelrn | ⊢ ( ( 𝐹 Fn ω ∧ suc 𝐴 ∈ ω ) → ( 𝐹 ‘ suc 𝐴 ) ∈ ran 𝐹 ) | |
| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( 𝐹 ‘ suc 𝐴 ) ∈ ran 𝐹 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝐹 ‘ suc 𝐴 ) ∈ ran 𝐹 ) |
| 10 | intss1 | ⊢ ( ( 𝐹 ‘ suc 𝐴 ) ∈ ran 𝐹 → ∩ ran 𝐹 ⊆ ( 𝐹 ‘ suc 𝐴 ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ∩ ran 𝐹 ⊆ ( 𝐹 ‘ suc 𝐴 ) ) |
| 12 | fvelrnb | ⊢ ( 𝐹 Fn ω → ( 𝑏 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ω ( 𝐹 ‘ 𝑐 ) = 𝑏 ) ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → ( 𝑏 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ω ( 𝐹 ‘ 𝑐 ) = 𝑏 ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑏 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ω ( 𝐹 ‘ 𝑐 ) = 𝑏 ) ) |
| 15 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ suc 𝐴 ⊆ 𝑐 ) → 𝑐 ∈ ω ) | |
| 16 | 6 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ suc 𝐴 ⊆ 𝑐 ) → suc 𝐴 ∈ ω ) |
| 17 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ suc 𝐴 ⊆ 𝑐 ) → suc 𝐴 ⊆ 𝑐 ) | |
| 18 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ suc 𝐴 ⊆ 𝑐 ) → ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 19 | fveq2 | ⊢ ( 𝑏 = suc 𝐴 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ suc 𝐴 ) ) | |
| 20 | 19 | eqeq2d | ⊢ ( 𝑏 = suc 𝐴 → ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑏 = suc 𝐴 → ( ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ) ↔ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝐴 ) ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑏 = 𝑑 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑑 ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑏 = 𝑑 → ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑑 ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑏 = 𝑑 → ( ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ) ↔ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 25 | fveq2 | ⊢ ( 𝑏 = suc 𝑑 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ suc 𝑑 ) ) | |
| 26 | 25 | eqeq2d | ⊢ ( 𝑏 = suc 𝑑 → ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝑑 ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑏 = suc 𝑑 → ( ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ) ↔ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝑑 ) ) ) ) |
| 28 | fveq2 | ⊢ ( 𝑏 = 𝑐 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑐 ) ) | |
| 29 | 28 | eqeq2d | ⊢ ( 𝑏 = 𝑐 → ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑐 ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑏 = 𝑐 → ( ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑏 ) ) ↔ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑐 ) ) ) ) |
| 31 | eqid | ⊢ ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝐴 ) | |
| 32 | 31 | 2a1i | ⊢ ( suc 𝐴 ∈ ω → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝐴 ) ) ) |
| 33 | elex | ⊢ ( suc 𝐴 ∈ ω → suc 𝐴 ∈ V ) | |
| 34 | sucexb | ⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) | |
| 35 | 33 34 | sylibr | ⊢ ( suc 𝐴 ∈ ω → 𝐴 ∈ V ) |
| 36 | 35 | adantl | ⊢ ( ( 𝑑 ∈ ω ∧ suc 𝐴 ∈ ω ) → 𝐴 ∈ V ) |
| 37 | sucssel | ⊢ ( 𝐴 ∈ V → ( suc 𝐴 ⊆ 𝑑 → 𝐴 ∈ 𝑑 ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝑑 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( suc 𝐴 ⊆ 𝑑 → 𝐴 ∈ 𝑑 ) ) |
| 39 | 38 | imp | ⊢ ( ( ( 𝑑 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑑 ) → 𝐴 ∈ 𝑑 ) |
| 40 | eleq2w | ⊢ ( 𝑎 = 𝑑 → ( 𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑑 ) ) | |
| 41 | suceq | ⊢ ( 𝑎 = 𝑑 → suc 𝑎 = suc 𝑑 ) | |
| 42 | 41 | fveq2d | ⊢ ( 𝑎 = 𝑑 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ suc 𝑑 ) ) |
| 43 | fveq2 | ⊢ ( 𝑎 = 𝑑 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑑 ) ) | |
| 44 | 42 43 | eqeq12d | ⊢ ( 𝑎 = 𝑑 → ( ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) |
| 45 | 40 44 | imbi12d | ⊢ ( 𝑎 = 𝑑 → ( ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝐴 ∈ 𝑑 → ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 46 | 45 | rspcv | ⊢ ( 𝑑 ∈ ω → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 ∈ 𝑑 → ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 47 | 46 | com23 | ⊢ ( 𝑑 ∈ ω → ( 𝐴 ∈ 𝑑 → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝑑 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑑 ) → ( 𝐴 ∈ 𝑑 → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) ) |
| 49 | 39 48 | mpd | ⊢ ( ( ( 𝑑 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑑 ) → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) ) |
| 50 | eqtr3 | ⊢ ( ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑑 ) ∧ ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝑑 ) ) | |
| 51 | 50 | expcom | ⊢ ( ( 𝐹 ‘ suc 𝑑 ) = ( 𝐹 ‘ 𝑑 ) → ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑑 ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝑑 ) ) ) |
| 52 | 49 51 | syl6 | ⊢ ( ( ( 𝑑 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑑 ) → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑑 ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝑑 ) ) ) ) |
| 53 | 52 | a2d | ⊢ ( ( ( 𝑑 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑑 ) → ( ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑑 ) ) → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ suc 𝑑 ) ) ) ) |
| 54 | 21 24 27 30 32 53 | findsg | ⊢ ( ( ( 𝑐 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ suc 𝐴 ⊆ 𝑐 ) → ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑐 ) ) ) |
| 55 | 54 | impr | ⊢ ( ( ( 𝑐 ∈ ω ∧ suc 𝐴 ∈ ω ) ∧ ( suc 𝐴 ⊆ 𝑐 ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 56 | 15 16 17 18 55 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ suc 𝐴 ⊆ 𝑐 ) → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 57 | eqimss | ⊢ ( ( 𝐹 ‘ suc 𝐴 ) = ( 𝐹 ‘ 𝑐 ) → ( 𝐹 ‘ suc 𝐴 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ suc 𝐴 ⊆ 𝑐 ) → ( 𝐹 ‘ suc 𝐴 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 59 | 6 | ad3antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ⊆ suc 𝐴 ) → suc 𝐴 ∈ ω ) |
| 60 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ⊆ suc 𝐴 ) → 𝑐 ∈ ω ) | |
| 61 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ⊆ suc 𝐴 ) → 𝑐 ⊆ suc 𝐴 ) | |
| 62 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ⊆ suc 𝐴 ) → 𝜑 ) | |
| 63 | 1 2 3 | isf32lem1 | ⊢ ( ( ( suc 𝐴 ∈ ω ∧ 𝑐 ∈ ω ) ∧ ( 𝑐 ⊆ suc 𝐴 ∧ 𝜑 ) ) → ( 𝐹 ‘ suc 𝐴 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 64 | 59 60 61 62 63 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ⊆ suc 𝐴 ) → ( 𝐹 ‘ suc 𝐴 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 65 | nnord | ⊢ ( suc 𝐴 ∈ ω → Ord suc 𝐴 ) | |
| 66 | 6 65 | syl | ⊢ ( 𝐴 ∈ ω → Ord suc 𝐴 ) |
| 67 | 66 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) → Ord suc 𝐴 ) |
| 68 | nnord | ⊢ ( 𝑐 ∈ ω → Ord 𝑐 ) | |
| 69 | 68 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) → Ord 𝑐 ) |
| 70 | ordtri2or2 | ⊢ ( ( Ord suc 𝐴 ∧ Ord 𝑐 ) → ( suc 𝐴 ⊆ 𝑐 ∨ 𝑐 ⊆ suc 𝐴 ) ) | |
| 71 | 67 69 70 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) → ( suc 𝐴 ⊆ 𝑐 ∨ 𝑐 ⊆ suc 𝐴 ) ) |
| 72 | 58 64 71 | mpjaodan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ( ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ∧ 𝑐 ∈ ω ) ) → ( 𝐹 ‘ suc 𝐴 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 73 | 72 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) ∧ 𝑐 ∈ ω ) → ( 𝐹 ‘ suc 𝐴 ) ⊆ ( 𝐹 ‘ 𝑐 ) ) |
| 74 | sseq2 | ⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑏 → ( ( 𝐹 ‘ suc 𝐴 ) ⊆ ( 𝐹 ‘ 𝑐 ) ↔ ( 𝐹 ‘ suc 𝐴 ) ⊆ 𝑏 ) ) | |
| 75 | 73 74 | syl5ibcom | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) ∧ 𝑐 ∈ ω ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑏 → ( 𝐹 ‘ suc 𝐴 ) ⊆ 𝑏 ) ) |
| 76 | 75 | rexlimdva | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ( ∃ 𝑐 ∈ ω ( 𝐹 ‘ 𝑐 ) = 𝑏 → ( 𝐹 ‘ suc 𝐴 ) ⊆ 𝑏 ) ) |
| 77 | 14 76 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝑏 ∈ ran 𝐹 → ( 𝐹 ‘ suc 𝐴 ) ⊆ 𝑏 ) ) |
| 78 | 77 | ralrimiv | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ∀ 𝑏 ∈ ran 𝐹 ( 𝐹 ‘ suc 𝐴 ) ⊆ 𝑏 ) |
| 79 | ssint | ⊢ ( ( 𝐹 ‘ suc 𝐴 ) ⊆ ∩ ran 𝐹 ↔ ∀ 𝑏 ∈ ran 𝐹 ( 𝐹 ‘ suc 𝐴 ) ⊆ 𝑏 ) | |
| 80 | 78 79 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ( 𝐹 ‘ suc 𝐴 ) ⊆ ∩ ran 𝐹 ) |
| 81 | 11 80 | eqssd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ∩ ran 𝐹 = ( 𝐹 ‘ suc 𝐴 ) ) |
| 82 | 81 9 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ω ) ∧ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) → ∩ ran 𝐹 ∈ ran 𝐹 ) |
| 83 | 4 82 | mtand | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ¬ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 84 | rexnal | ⊢ ( ∃ 𝑎 ∈ ω ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ↔ ¬ ∀ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 85 | 83 84 | sylibr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ∃ 𝑎 ∈ ω ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 86 | suceq | ⊢ ( 𝑥 = 𝑎 → suc 𝑥 = suc 𝑎 ) | |
| 87 | 86 | fveq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ suc 𝑥 ) = ( 𝐹 ‘ suc 𝑎 ) ) |
| 88 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 89 | 87 88 | sseq12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) ) ) |
| 90 | 89 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑎 ∈ ω ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) ) |
| 91 | 2 90 | sylib | ⊢ ( 𝜑 → ∀ 𝑎 ∈ ω ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ∀ 𝑎 ∈ ω ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) ) |
| 93 | pm4.61 | ⊢ ( ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ↔ ( 𝐴 ∈ 𝑎 ∧ ¬ ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 94 | dfpss2 | ⊢ ( ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ↔ ( ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) ∧ ¬ ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) ) | |
| 95 | 94 | simplbi2 | ⊢ ( ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) → ( ¬ ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) → ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) |
| 96 | 95 | anim2d | ⊢ ( ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) → ( ( 𝐴 ∈ 𝑎 ∧ ¬ ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 97 | 93 96 | biimtrid | ⊢ ( ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) → ( ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 98 | 97 | ralimi | ⊢ ( ∀ 𝑎 ∈ ω ( 𝐹 ‘ suc 𝑎 ) ⊆ ( 𝐹 ‘ 𝑎 ) → ∀ 𝑎 ∈ ω ( ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 99 | rexim | ⊢ ( ∀ 𝑎 ∈ ω ( ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) → ( ∃ 𝑎 ∈ ω ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) ) | |
| 100 | 92 98 99 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ( ∃ 𝑎 ∈ ω ¬ ( 𝐴 ∈ 𝑎 → ( 𝐹 ‘ suc 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) → ∃ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) ) |
| 101 | 85 100 | mpd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ω ) → ∃ 𝑎 ∈ ω ( 𝐴 ∈ 𝑎 ∧ ( 𝐹 ‘ suc 𝑎 ) ⊊ ( 𝐹 ‘ 𝑎 ) ) ) |