This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin3-2 . Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
||
| isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
||
| Assertion | isf32lem3 | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | |- ( ph -> F : _om --> ~P G ) |
|
| 2 | isf32lem.b | |- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
|
| 3 | isf32lem.c | |- ( ph -> -. |^| ran F e. ran F ) |
|
| 4 | eldifi | |- ( a e. ( ( F ` A ) \ ( F ` suc A ) ) -> a e. ( F ` A ) ) |
|
| 5 | simpll | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> A e. _om ) |
|
| 6 | peano2 | |- ( B e. _om -> suc B e. _om ) |
|
| 7 | 6 | ad2antlr | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> suc B e. _om ) |
| 8 | nnord | |- ( A e. _om -> Ord A ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> Ord A ) |
| 10 | simprl | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> B e. A ) |
|
| 11 | ordsucss | |- ( Ord A -> ( B e. A -> suc B C_ A ) ) |
|
| 12 | 9 10 11 | sylc | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> suc B C_ A ) |
| 13 | simprr | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ph ) |
|
| 14 | 1 2 3 | isf32lem1 | |- ( ( ( A e. _om /\ suc B e. _om ) /\ ( suc B C_ A /\ ph ) ) -> ( F ` A ) C_ ( F ` suc B ) ) |
| 15 | 5 7 12 13 14 | syl22anc | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ( F ` A ) C_ ( F ` suc B ) ) |
| 16 | 15 | sseld | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ( a e. ( F ` A ) -> a e. ( F ` suc B ) ) ) |
| 17 | elndif | |- ( a e. ( F ` suc B ) -> -. a e. ( ( F ` B ) \ ( F ` suc B ) ) ) |
|
| 18 | 4 16 17 | syl56 | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ( a e. ( ( F ` A ) \ ( F ` suc A ) ) -> -. a e. ( ( F ` B ) \ ( F ` suc B ) ) ) ) |
| 19 | 18 | ralrimiv | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> A. a e. ( ( F ` A ) \ ( F ` suc A ) ) -. a e. ( ( F ` B ) \ ( F ` suc B ) ) ) |
| 20 | disj | |- ( ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) <-> A. a e. ( ( F ` A ) \ ( F ` suc A ) ) -. a e. ( ( F ` B ) \ ( F ` suc B ) ) ) |
|
| 21 | 19 20 | sylibr | |- ( ( ( A e. _om /\ B e. _om ) /\ ( B e. A /\ ph ) ) -> ( ( ( F ` A ) \ ( F ` suc A ) ) i^i ( ( F ` B ) \ ( F ` suc B ) ) ) = (/) ) |