This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number B instead of zero. (Contributed by NM, 16-Sep-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findsg.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
| findsg.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| findsg.3 | |- ( x = suc y -> ( ph <-> th ) ) |
||
| findsg.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| findsg.5 | |- ( B e. _om -> ps ) |
||
| findsg.6 | |- ( ( ( y e. _om /\ B e. _om ) /\ B C_ y ) -> ( ch -> th ) ) |
||
| Assertion | findsg | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findsg.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
| 2 | findsg.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | findsg.3 | |- ( x = suc y -> ( ph <-> th ) ) |
|
| 4 | findsg.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | findsg.5 | |- ( B e. _om -> ps ) |
|
| 6 | findsg.6 | |- ( ( ( y e. _om /\ B e. _om ) /\ B C_ y ) -> ( ch -> th ) ) |
|
| 7 | sseq2 | |- ( x = (/) -> ( B C_ x <-> B C_ (/) ) ) |
|
| 8 | 7 | adantl | |- ( ( B = (/) /\ x = (/) ) -> ( B C_ x <-> B C_ (/) ) ) |
| 9 | eqeq2 | |- ( B = (/) -> ( x = B <-> x = (/) ) ) |
|
| 10 | 9 1 | biimtrrdi | |- ( B = (/) -> ( x = (/) -> ( ph <-> ps ) ) ) |
| 11 | 10 | imp | |- ( ( B = (/) /\ x = (/) ) -> ( ph <-> ps ) ) |
| 12 | 8 11 | imbi12d | |- ( ( B = (/) /\ x = (/) ) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 13 | 7 | imbi1d | |- ( x = (/) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ph ) ) ) |
| 14 | ss0 | |- ( B C_ (/) -> B = (/) ) |
|
| 15 | 14 | con3i | |- ( -. B = (/) -> -. B C_ (/) ) |
| 16 | 15 | pm2.21d | |- ( -. B = (/) -> ( B C_ (/) -> ( ph <-> ps ) ) ) |
| 17 | 16 | pm5.74d | |- ( -. B = (/) -> ( ( B C_ (/) -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 18 | 13 17 | sylan9bbr | |- ( ( -. B = (/) /\ x = (/) ) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 19 | 12 18 | pm2.61ian | |- ( x = (/) -> ( ( B C_ x -> ph ) <-> ( B C_ (/) -> ps ) ) ) |
| 20 | 19 | imbi2d | |- ( x = (/) -> ( ( B e. _om -> ( B C_ x -> ph ) ) <-> ( B e. _om -> ( B C_ (/) -> ps ) ) ) ) |
| 21 | sseq2 | |- ( x = y -> ( B C_ x <-> B C_ y ) ) |
|
| 22 | 21 2 | imbi12d | |- ( x = y -> ( ( B C_ x -> ph ) <-> ( B C_ y -> ch ) ) ) |
| 23 | 22 | imbi2d | |- ( x = y -> ( ( B e. _om -> ( B C_ x -> ph ) ) <-> ( B e. _om -> ( B C_ y -> ch ) ) ) ) |
| 24 | sseq2 | |- ( x = suc y -> ( B C_ x <-> B C_ suc y ) ) |
|
| 25 | 24 3 | imbi12d | |- ( x = suc y -> ( ( B C_ x -> ph ) <-> ( B C_ suc y -> th ) ) ) |
| 26 | 25 | imbi2d | |- ( x = suc y -> ( ( B e. _om -> ( B C_ x -> ph ) ) <-> ( B e. _om -> ( B C_ suc y -> th ) ) ) ) |
| 27 | sseq2 | |- ( x = A -> ( B C_ x <-> B C_ A ) ) |
|
| 28 | 27 4 | imbi12d | |- ( x = A -> ( ( B C_ x -> ph ) <-> ( B C_ A -> ta ) ) ) |
| 29 | 28 | imbi2d | |- ( x = A -> ( ( B e. _om -> ( B C_ x -> ph ) ) <-> ( B e. _om -> ( B C_ A -> ta ) ) ) ) |
| 30 | 5 | a1d | |- ( B e. _om -> ( B C_ (/) -> ps ) ) |
| 31 | vex | |- y e. _V |
|
| 32 | 31 | sucex | |- suc y e. _V |
| 33 | 32 | eqvinc | |- ( suc y = B <-> E. x ( x = suc y /\ x = B ) ) |
| 34 | 5 1 | imbitrrid | |- ( x = B -> ( B e. _om -> ph ) ) |
| 35 | 3 | biimpd | |- ( x = suc y -> ( ph -> th ) ) |
| 36 | 34 35 | sylan9r | |- ( ( x = suc y /\ x = B ) -> ( B e. _om -> th ) ) |
| 37 | 36 | exlimiv | |- ( E. x ( x = suc y /\ x = B ) -> ( B e. _om -> th ) ) |
| 38 | 33 37 | sylbi | |- ( suc y = B -> ( B e. _om -> th ) ) |
| 39 | 38 | eqcoms | |- ( B = suc y -> ( B e. _om -> th ) ) |
| 40 | 39 | imim2i | |- ( ( B C_ suc y -> B = suc y ) -> ( B C_ suc y -> ( B e. _om -> th ) ) ) |
| 41 | 40 | a1d | |- ( ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> ( B e. _om -> th ) ) ) ) |
| 42 | 41 | com4r | |- ( B e. _om -> ( ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 43 | 42 | adantl | |- ( ( y e. _om /\ B e. _om ) -> ( ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 44 | df-ne | |- ( B =/= suc y <-> -. B = suc y ) |
|
| 45 | 44 | anbi2i | |- ( ( B C_ suc y /\ B =/= suc y ) <-> ( B C_ suc y /\ -. B = suc y ) ) |
| 46 | annim | |- ( ( B C_ suc y /\ -. B = suc y ) <-> -. ( B C_ suc y -> B = suc y ) ) |
|
| 47 | 45 46 | bitri | |- ( ( B C_ suc y /\ B =/= suc y ) <-> -. ( B C_ suc y -> B = suc y ) ) |
| 48 | nnon | |- ( B e. _om -> B e. On ) |
|
| 49 | nnon | |- ( y e. _om -> y e. On ) |
|
| 50 | onsssuc | |- ( ( B e. On /\ y e. On ) -> ( B C_ y <-> B e. suc y ) ) |
|
| 51 | onsuc | |- ( y e. On -> suc y e. On ) |
|
| 52 | onelpss | |- ( ( B e. On /\ suc y e. On ) -> ( B e. suc y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
|
| 53 | 51 52 | sylan2 | |- ( ( B e. On /\ y e. On ) -> ( B e. suc y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
| 54 | 50 53 | bitrd | |- ( ( B e. On /\ y e. On ) -> ( B C_ y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
| 55 | 48 49 54 | syl2anr | |- ( ( y e. _om /\ B e. _om ) -> ( B C_ y <-> ( B C_ suc y /\ B =/= suc y ) ) ) |
| 56 | 6 | ex | |- ( ( y e. _om /\ B e. _om ) -> ( B C_ y -> ( ch -> th ) ) ) |
| 57 | 56 | a1ddd | |- ( ( y e. _om /\ B e. _om ) -> ( B C_ y -> ( ch -> ( B C_ suc y -> th ) ) ) ) |
| 58 | 57 | a2d | |- ( ( y e. _om /\ B e. _om ) -> ( ( B C_ y -> ch ) -> ( B C_ y -> ( B C_ suc y -> th ) ) ) ) |
| 59 | 58 | com23 | |- ( ( y e. _om /\ B e. _om ) -> ( B C_ y -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 60 | 55 59 | sylbird | |- ( ( y e. _om /\ B e. _om ) -> ( ( B C_ suc y /\ B =/= suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 61 | 47 60 | biimtrrid | |- ( ( y e. _om /\ B e. _om ) -> ( -. ( B C_ suc y -> B = suc y ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 62 | 43 61 | pm2.61d | |- ( ( y e. _om /\ B e. _om ) -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) |
| 63 | 62 | ex | |- ( y e. _om -> ( B e. _om -> ( ( B C_ y -> ch ) -> ( B C_ suc y -> th ) ) ) ) |
| 64 | 63 | a2d | |- ( y e. _om -> ( ( B e. _om -> ( B C_ y -> ch ) ) -> ( B e. _om -> ( B C_ suc y -> th ) ) ) ) |
| 65 | 20 23 26 29 30 64 | finds | |- ( A e. _om -> ( B e. _om -> ( B C_ A -> ta ) ) ) |
| 66 | 65 | imp31 | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ta ) |