This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of isdrngrd as of 19-Feb-2025. (Contributed by NM, 10-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrngdOLD.b | |- ( ph -> B = ( Base ` R ) ) |
|
| isdrngdOLD.t | |- ( ph -> .x. = ( .r ` R ) ) |
||
| isdrngdOLD.z | |- ( ph -> .0. = ( 0g ` R ) ) |
||
| isdrngdOLD.u | |- ( ph -> .1. = ( 1r ` R ) ) |
||
| isdrngdOLD.r | |- ( ph -> R e. Ring ) |
||
| isdrngdOLD.n | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) =/= .0. ) |
||
| isdrngdOLD.o | |- ( ph -> .1. =/= .0. ) |
||
| isdrngdOLD.i | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. B ) |
||
| isdrngdOLD.j | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I =/= .0. ) |
||
| isdrngrdOLD.k | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x .x. I ) = .1. ) |
||
| Assertion | isdrngrdOLD | |- ( ph -> R e. DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrngdOLD.b | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | isdrngdOLD.t | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 3 | isdrngdOLD.z | |- ( ph -> .0. = ( 0g ` R ) ) |
|
| 4 | isdrngdOLD.u | |- ( ph -> .1. = ( 1r ` R ) ) |
|
| 5 | isdrngdOLD.r | |- ( ph -> R e. Ring ) |
|
| 6 | isdrngdOLD.n | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) =/= .0. ) |
|
| 7 | isdrngdOLD.o | |- ( ph -> .1. =/= .0. ) |
|
| 8 | isdrngdOLD.i | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. B ) |
|
| 9 | isdrngdOLD.j | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I =/= .0. ) |
|
| 10 | isdrngrdOLD.k | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x .x. I ) = .1. ) |
|
| 11 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 12 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 13 | 11 12 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 14 | 1 13 | eqtrdi | |- ( ph -> B = ( Base ` ( oppR ` R ) ) ) |
| 15 | eqidd | |- ( ph -> ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) ) |
|
| 16 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 17 | 11 16 | oppr0 | |- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
| 18 | 3 17 | eqtrdi | |- ( ph -> .0. = ( 0g ` ( oppR ` R ) ) ) |
| 19 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 20 | 11 19 | oppr1 | |- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
| 21 | 4 20 | eqtrdi | |- ( ph -> .1. = ( 1r ` ( oppR ` R ) ) ) |
| 22 | 11 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 23 | 5 22 | syl | |- ( ph -> ( oppR ` R ) e. Ring ) |
| 24 | eleq1w | |- ( y = x -> ( y e. B <-> x e. B ) ) |
|
| 25 | neeq1 | |- ( y = x -> ( y =/= .0. <-> x =/= .0. ) ) |
|
| 26 | 24 25 | anbi12d | |- ( y = x -> ( ( y e. B /\ y =/= .0. ) <-> ( x e. B /\ x =/= .0. ) ) ) |
| 27 | 26 | 3anbi2d | |- ( y = x -> ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) <-> ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) ) ) |
| 28 | oveq1 | |- ( y = x -> ( y ( .r ` ( oppR ` R ) ) z ) = ( x ( .r ` ( oppR ` R ) ) z ) ) |
|
| 29 | 28 | neeq1d | |- ( y = x -> ( ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. <-> ( x ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) |
| 30 | 27 29 | imbi12d | |- ( y = x -> ( ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) <-> ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( x ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) ) |
| 31 | eleq1w | |- ( x = z -> ( x e. B <-> z e. B ) ) |
|
| 32 | neeq1 | |- ( x = z -> ( x =/= .0. <-> z =/= .0. ) ) |
|
| 33 | 31 32 | anbi12d | |- ( x = z -> ( ( x e. B /\ x =/= .0. ) <-> ( z e. B /\ z =/= .0. ) ) ) |
| 34 | 33 | 3anbi3d | |- ( x = z -> ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( x e. B /\ x =/= .0. ) ) <-> ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) ) ) |
| 35 | oveq2 | |- ( x = z -> ( y ( .r ` ( oppR ` R ) ) x ) = ( y ( .r ` ( oppR ` R ) ) z ) ) |
|
| 36 | 35 | neeq1d | |- ( x = z -> ( ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. <-> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) |
| 37 | 34 36 | imbi12d | |- ( x = z -> ( ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( x e. B /\ x =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. ) <-> ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) ) |
| 38 | 2 | 3ad2ant1 | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> .x. = ( .r ` R ) ) |
| 39 | 38 | oveqd | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 40 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 41 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 42 | 12 40 11 41 | opprmul | |- ( y ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) y ) |
| 43 | 39 42 | eqtr4di | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) = ( y ( .r ` ( oppR ` R ) ) x ) ) |
| 44 | 43 6 | eqnetrrd | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. ) |
| 45 | 44 | 3com23 | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( x e. B /\ x =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. ) |
| 46 | 37 45 | chvarvv | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) |
| 47 | 30 46 | chvarvv | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( x ( .r ` ( oppR ` R ) ) z ) =/= .0. ) |
| 48 | 12 40 11 41 | opprmul | |- ( I ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) I ) |
| 49 | 2 | adantr | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> .x. = ( .r ` R ) ) |
| 50 | 49 | oveqd | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x .x. I ) = ( x ( .r ` R ) I ) ) |
| 51 | 50 10 | eqtr3d | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x ( .r ` R ) I ) = .1. ) |
| 52 | 48 51 | eqtrid | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( I ( .r ` ( oppR ` R ) ) x ) = .1. ) |
| 53 | 14 15 18 21 23 47 7 8 9 52 | isdrngdOLD | |- ( ph -> ( oppR ` R ) e. DivRing ) |
| 54 | 11 | opprdrng | |- ( R e. DivRing <-> ( oppR ` R ) e. DivRing ) |
| 55 | 53 54 | sylibr | |- ( ph -> R e. DivRing ) |