This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite of a division ring is also a division ring. (Contributed by NM, 18-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprdrng.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprdrng | |- ( R e. DivRing <-> O e. DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprdrng.1 | |- O = ( oppR ` R ) |
|
| 2 | 1 | opprringb | |- ( R e. Ring <-> O e. Ring ) |
| 3 | 2 | anbi1i | |- ( ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) <-> ( O e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 4 5 6 | isdrng | |- ( R e. DivRing <-> ( R e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 8 | 1 4 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 9 | 5 1 | opprunit | |- ( Unit ` R ) = ( Unit ` O ) |
| 10 | 1 6 | oppr0 | |- ( 0g ` R ) = ( 0g ` O ) |
| 11 | 8 9 10 | isdrng | |- ( O e. DivRing <-> ( O e. Ring /\ ( Unit ` R ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 12 | 3 7 11 | 3bitr4i | |- ( R e. DivRing <-> O e. DivRing ) |