This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that characterize a division ring among rings: it should be nonzero, have no nonzero zero-divisors, and every nonzero element x should have a right-inverse I ( x ) . See isdrngd for the characterization using left-inverses. (Contributed by NM, 10-Aug-2013) Remove hypothesis. (Revised by SN, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrngd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| isdrngd.t | |- ( ph -> .x. = ( .r ` R ) ) |
||
| isdrngd.z | |- ( ph -> .0. = ( 0g ` R ) ) |
||
| isdrngd.u | |- ( ph -> .1. = ( 1r ` R ) ) |
||
| isdrngd.r | |- ( ph -> R e. Ring ) |
||
| isdrngd.n | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) =/= .0. ) |
||
| isdrngd.o | |- ( ph -> .1. =/= .0. ) |
||
| isdrngd.i | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. B ) |
||
| isdrngrd.k | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x .x. I ) = .1. ) |
||
| Assertion | isdrngrd | |- ( ph -> R e. DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrngd.b | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | isdrngd.t | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 3 | isdrngd.z | |- ( ph -> .0. = ( 0g ` R ) ) |
|
| 4 | isdrngd.u | |- ( ph -> .1. = ( 1r ` R ) ) |
|
| 5 | isdrngd.r | |- ( ph -> R e. Ring ) |
|
| 6 | isdrngd.n | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) =/= .0. ) |
|
| 7 | isdrngd.o | |- ( ph -> .1. =/= .0. ) |
|
| 8 | isdrngd.i | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. B ) |
|
| 9 | isdrngrd.k | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x .x. I ) = .1. ) |
|
| 10 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 11 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 12 | 10 11 | opprbas | |- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 13 | 1 12 | eqtrdi | |- ( ph -> B = ( Base ` ( oppR ` R ) ) ) |
| 14 | eqidd | |- ( ph -> ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) ) |
|
| 15 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 16 | 10 15 | oppr0 | |- ( 0g ` R ) = ( 0g ` ( oppR ` R ) ) |
| 17 | 3 16 | eqtrdi | |- ( ph -> .0. = ( 0g ` ( oppR ` R ) ) ) |
| 18 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 19 | 10 18 | oppr1 | |- ( 1r ` R ) = ( 1r ` ( oppR ` R ) ) |
| 20 | 4 19 | eqtrdi | |- ( ph -> .1. = ( 1r ` ( oppR ` R ) ) ) |
| 21 | 10 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 22 | 5 21 | syl | |- ( ph -> ( oppR ` R ) e. Ring ) |
| 23 | eleq1w | |- ( y = x -> ( y e. B <-> x e. B ) ) |
|
| 24 | neeq1 | |- ( y = x -> ( y =/= .0. <-> x =/= .0. ) ) |
|
| 25 | 23 24 | anbi12d | |- ( y = x -> ( ( y e. B /\ y =/= .0. ) <-> ( x e. B /\ x =/= .0. ) ) ) |
| 26 | 25 | 3anbi2d | |- ( y = x -> ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) <-> ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) ) ) |
| 27 | oveq1 | |- ( y = x -> ( y ( .r ` ( oppR ` R ) ) z ) = ( x ( .r ` ( oppR ` R ) ) z ) ) |
|
| 28 | 27 | neeq1d | |- ( y = x -> ( ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. <-> ( x ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) |
| 29 | 26 28 | imbi12d | |- ( y = x -> ( ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) <-> ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( x ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) ) |
| 30 | eleq1w | |- ( x = z -> ( x e. B <-> z e. B ) ) |
|
| 31 | neeq1 | |- ( x = z -> ( x =/= .0. <-> z =/= .0. ) ) |
|
| 32 | 30 31 | anbi12d | |- ( x = z -> ( ( x e. B /\ x =/= .0. ) <-> ( z e. B /\ z =/= .0. ) ) ) |
| 33 | 32 | 3anbi3d | |- ( x = z -> ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( x e. B /\ x =/= .0. ) ) <-> ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) ) ) |
| 34 | oveq2 | |- ( x = z -> ( y ( .r ` ( oppR ` R ) ) x ) = ( y ( .r ` ( oppR ` R ) ) z ) ) |
|
| 35 | 34 | neeq1d | |- ( x = z -> ( ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. <-> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) |
| 36 | 33 35 | imbi12d | |- ( x = z -> ( ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( x e. B /\ x =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. ) <-> ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) ) ) |
| 37 | 2 | 3ad2ant1 | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> .x. = ( .r ` R ) ) |
| 38 | 37 | oveqd | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 39 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 40 | eqid | |- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
|
| 41 | 11 39 10 40 | opprmul | |- ( y ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) y ) |
| 42 | 38 41 | eqtr4di | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) = ( y ( .r ` ( oppR ` R ) ) x ) ) |
| 43 | 42 6 | eqnetrrd | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. ) |
| 44 | 43 | 3com23 | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( x e. B /\ x =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) x ) =/= .0. ) |
| 45 | 36 44 | chvarvv | |- ( ( ph /\ ( y e. B /\ y =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( y ( .r ` ( oppR ` R ) ) z ) =/= .0. ) |
| 46 | 29 45 | chvarvv | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( z e. B /\ z =/= .0. ) ) -> ( x ( .r ` ( oppR ` R ) ) z ) =/= .0. ) |
| 47 | 11 39 10 40 | opprmul | |- ( I ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) I ) |
| 48 | 2 | adantr | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> .x. = ( .r ` R ) ) |
| 49 | 48 | oveqd | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x .x. I ) = ( x ( .r ` R ) I ) ) |
| 50 | 49 9 | eqtr3d | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( x ( .r ` R ) I ) = .1. ) |
| 51 | 47 50 | eqtrid | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( I ( .r ` ( oppR ` R ) ) x ) = .1. ) |
| 52 | 13 14 17 20 22 46 7 8 51 | isdrngd | |- ( ph -> ( oppR ` R ) e. DivRing ) |
| 53 | 10 | opprdrng | |- ( R e. DivRing <-> ( oppR ` R ) e. DivRing ) |
| 54 | 52 53 | sylibr | |- ( ph -> R e. DivRing ) |