This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a division ring iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| drngpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| drngpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| drngpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | drngpropd | |- ( ph -> ( K e. DivRing <-> L e. DivRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | drngpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | drngpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | drngpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | 1 2 4 | unitpropd | |- ( ph -> ( Unit ` K ) = ( Unit ` L ) ) |
| 6 | 5 | adantr | |- ( ( ph /\ K e. Ring ) -> ( Unit ` K ) = ( Unit ` L ) ) |
| 7 | 1 2 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ K e. Ring ) -> ( Base ` K ) = ( Base ` L ) ) |
| 9 | 1 | adantr | |- ( ( ph /\ K e. Ring ) -> B = ( Base ` K ) ) |
| 10 | 2 | adantr | |- ( ( ph /\ K e. Ring ) -> B = ( Base ` L ) ) |
| 11 | 3 | adantlr | |- ( ( ( ph /\ K e. Ring ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 12 | 9 10 11 | grpidpropd | |- ( ( ph /\ K e. Ring ) -> ( 0g ` K ) = ( 0g ` L ) ) |
| 13 | 12 | sneqd | |- ( ( ph /\ K e. Ring ) -> { ( 0g ` K ) } = { ( 0g ` L ) } ) |
| 14 | 8 13 | difeq12d | |- ( ( ph /\ K e. Ring ) -> ( ( Base ` K ) \ { ( 0g ` K ) } ) = ( ( Base ` L ) \ { ( 0g ` L ) } ) ) |
| 15 | 6 14 | eqeq12d | |- ( ( ph /\ K e. Ring ) -> ( ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) <-> ( Unit ` L ) = ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) |
| 16 | 15 | pm5.32da | |- ( ph -> ( ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) <-> ( K e. Ring /\ ( Unit ` L ) = ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) ) |
| 17 | 1 2 3 4 | ringpropd | |- ( ph -> ( K e. Ring <-> L e. Ring ) ) |
| 18 | 17 | anbi1d | |- ( ph -> ( ( K e. Ring /\ ( Unit ` L ) = ( ( Base ` L ) \ { ( 0g ` L ) } ) ) <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) ) |
| 19 | 16 18 | bitrd | |- ( ph -> ( ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) ) |
| 20 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 21 | eqid | |- ( Unit ` K ) = ( Unit ` K ) |
|
| 22 | eqid | |- ( 0g ` K ) = ( 0g ` K ) |
|
| 23 | 20 21 22 | isdrng | |- ( K e. DivRing <-> ( K e. Ring /\ ( Unit ` K ) = ( ( Base ` K ) \ { ( 0g ` K ) } ) ) ) |
| 24 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 25 | eqid | |- ( Unit ` L ) = ( Unit ` L ) |
|
| 26 | eqid | |- ( 0g ` L ) = ( 0g ` L ) |
|
| 27 | 24 25 26 | isdrng | |- ( L e. DivRing <-> ( L e. Ring /\ ( Unit ` L ) = ( ( Base ` L ) \ { ( 0g ` L ) } ) ) ) |
| 28 | 19 23 27 | 3bitr4g | |- ( ph -> ( K e. DivRing <-> L e. DivRing ) ) |