This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of isdrngd as of 19-Feb-2025. (Contributed by NM, 2-Aug-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdrngdOLD.b | |- ( ph -> B = ( Base ` R ) ) |
|
| isdrngdOLD.t | |- ( ph -> .x. = ( .r ` R ) ) |
||
| isdrngdOLD.z | |- ( ph -> .0. = ( 0g ` R ) ) |
||
| isdrngdOLD.u | |- ( ph -> .1. = ( 1r ` R ) ) |
||
| isdrngdOLD.r | |- ( ph -> R e. Ring ) |
||
| isdrngdOLD.n | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) =/= .0. ) |
||
| isdrngdOLD.o | |- ( ph -> .1. =/= .0. ) |
||
| isdrngdOLD.i | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. B ) |
||
| isdrngdOLD.j | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I =/= .0. ) |
||
| isdrngdOLD.k | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( I .x. x ) = .1. ) |
||
| Assertion | isdrngdOLD | |- ( ph -> R e. DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdrngdOLD.b | |- ( ph -> B = ( Base ` R ) ) |
|
| 2 | isdrngdOLD.t | |- ( ph -> .x. = ( .r ` R ) ) |
|
| 3 | isdrngdOLD.z | |- ( ph -> .0. = ( 0g ` R ) ) |
|
| 4 | isdrngdOLD.u | |- ( ph -> .1. = ( 1r ` R ) ) |
|
| 5 | isdrngdOLD.r | |- ( ph -> R e. Ring ) |
|
| 6 | isdrngdOLD.n | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) =/= .0. ) |
|
| 7 | isdrngdOLD.o | |- ( ph -> .1. =/= .0. ) |
|
| 8 | isdrngdOLD.i | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. B ) |
|
| 9 | isdrngdOLD.j | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I =/= .0. ) |
|
| 10 | isdrngdOLD.k | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( I .x. x ) = .1. ) |
|
| 11 | difss | |- ( B \ { .0. } ) C_ B |
|
| 12 | 11 1 | sseqtrid | |- ( ph -> ( B \ { .0. } ) C_ ( Base ` R ) ) |
| 13 | eqid | |- ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) |
|
| 14 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 14 15 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 17 | 13 16 | ressbas2 | |- ( ( B \ { .0. } ) C_ ( Base ` R ) -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 18 | 12 17 | syl | |- ( ph -> ( B \ { .0. } ) = ( Base ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 19 | fvex | |- ( Base ` R ) e. _V |
|
| 20 | 1 19 | eqeltrdi | |- ( ph -> B e. _V ) |
| 21 | difexg | |- ( B e. _V -> ( B \ { .0. } ) e. _V ) |
|
| 22 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 23 | 14 22 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 24 | 13 23 | ressplusg | |- ( ( B \ { .0. } ) e. _V -> ( .r ` R ) = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 25 | 20 21 24 | 3syl | |- ( ph -> ( .r ` R ) = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 26 | 2 25 | eqtrd | |- ( ph -> .x. = ( +g ` ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) ) ) |
| 27 | eldifsn | |- ( x e. ( B \ { .0. } ) <-> ( x e. B /\ x =/= .0. ) ) |
|
| 28 | eldifsn | |- ( y e. ( B \ { .0. } ) <-> ( y e. B /\ y =/= .0. ) ) |
|
| 29 | 15 22 | ringcl | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 30 | 5 29 | syl3an1 | |- ( ( ph /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) |
| 31 | 30 | 3expib | |- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( .r ` R ) y ) e. ( Base ` R ) ) ) |
| 32 | 1 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Base ` R ) ) ) |
| 33 | 1 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( Base ` R ) ) ) |
| 34 | 32 33 | anbi12d | |- ( ph -> ( ( x e. B /\ y e. B ) <-> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) ) |
| 35 | 2 | oveqd | |- ( ph -> ( x .x. y ) = ( x ( .r ` R ) y ) ) |
| 36 | 35 1 | eleq12d | |- ( ph -> ( ( x .x. y ) e. B <-> ( x ( .r ` R ) y ) e. ( Base ` R ) ) ) |
| 37 | 31 34 36 | 3imtr4d | |- ( ph -> ( ( x e. B /\ y e. B ) -> ( x .x. y ) e. B ) ) |
| 38 | 37 | 3impib | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .x. y ) e. B ) |
| 39 | 38 | 3adant2r | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ y e. B ) -> ( x .x. y ) e. B ) |
| 40 | 39 | 3adant3r | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) e. B ) |
| 41 | eldifsn | |- ( ( x .x. y ) e. ( B \ { .0. } ) <-> ( ( x .x. y ) e. B /\ ( x .x. y ) =/= .0. ) ) |
|
| 42 | 40 6 41 | sylanbrc | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ ( y e. B /\ y =/= .0. ) ) -> ( x .x. y ) e. ( B \ { .0. } ) ) |
| 43 | 28 42 | syl3an3b | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) /\ y e. ( B \ { .0. } ) ) -> ( x .x. y ) e. ( B \ { .0. } ) ) |
| 44 | 27 43 | syl3an2b | |- ( ( ph /\ x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) ) -> ( x .x. y ) e. ( B \ { .0. } ) ) |
| 45 | 15 22 | ringass | |- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) |
| 46 | 45 | ex | |- ( R e. Ring -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 47 | 5 46 | syl | |- ( ph -> ( ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 48 | 1 | eleq2d | |- ( ph -> ( z e. B <-> z e. ( Base ` R ) ) ) |
| 49 | 32 33 48 | 3anbi123d | |- ( ph -> ( ( x e. B /\ y e. B /\ z e. B ) <-> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) ) |
| 50 | eqidd | |- ( ph -> z = z ) |
|
| 51 | 2 35 50 | oveq123d | |- ( ph -> ( ( x .x. y ) .x. z ) = ( ( x ( .r ` R ) y ) ( .r ` R ) z ) ) |
| 52 | eqidd | |- ( ph -> x = x ) |
|
| 53 | 2 | oveqd | |- ( ph -> ( y .x. z ) = ( y ( .r ` R ) z ) ) |
| 54 | 2 52 53 | oveq123d | |- ( ph -> ( x .x. ( y .x. z ) ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) |
| 55 | 51 54 | eqeq12d | |- ( ph -> ( ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) <-> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) ) |
| 56 | 47 49 55 | 3imtr4d | |- ( ph -> ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) ) |
| 57 | eldifi | |- ( x e. ( B \ { .0. } ) -> x e. B ) |
|
| 58 | eldifi | |- ( y e. ( B \ { .0. } ) -> y e. B ) |
|
| 59 | eldifi | |- ( z e. ( B \ { .0. } ) -> z e. B ) |
|
| 60 | 57 58 59 | 3anim123i | |- ( ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) /\ z e. ( B \ { .0. } ) ) -> ( x e. B /\ y e. B /\ z e. B ) ) |
| 61 | 56 60 | impel | |- ( ( ph /\ ( x e. ( B \ { .0. } ) /\ y e. ( B \ { .0. } ) /\ z e. ( B \ { .0. } ) ) ) -> ( ( x .x. y ) .x. z ) = ( x .x. ( y .x. z ) ) ) |
| 62 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 63 | 15 62 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 64 | 5 63 | syl | |- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 65 | 64 4 1 | 3eltr4d | |- ( ph -> .1. e. B ) |
| 66 | eldifsn | |- ( .1. e. ( B \ { .0. } ) <-> ( .1. e. B /\ .1. =/= .0. ) ) |
|
| 67 | 65 7 66 | sylanbrc | |- ( ph -> .1. e. ( B \ { .0. } ) ) |
| 68 | 15 22 62 | ringlidm | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
| 69 | 68 | ex | |- ( R e. Ring -> ( x e. ( Base ` R ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) ) |
| 70 | 5 69 | syl | |- ( ph -> ( x e. ( Base ` R ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) ) |
| 71 | 2 4 52 | oveq123d | |- ( ph -> ( .1. .x. x ) = ( ( 1r ` R ) ( .r ` R ) x ) ) |
| 72 | 71 | eqeq1d | |- ( ph -> ( ( .1. .x. x ) = x <-> ( ( 1r ` R ) ( .r ` R ) x ) = x ) ) |
| 73 | 70 32 72 | 3imtr4d | |- ( ph -> ( x e. B -> ( .1. .x. x ) = x ) ) |
| 74 | 73 | imp | |- ( ( ph /\ x e. B ) -> ( .1. .x. x ) = x ) |
| 75 | 74 | adantrr | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> ( .1. .x. x ) = x ) |
| 76 | 27 75 | sylan2b | |- ( ( ph /\ x e. ( B \ { .0. } ) ) -> ( .1. .x. x ) = x ) |
| 77 | eldifsn | |- ( I e. ( B \ { .0. } ) <-> ( I e. B /\ I =/= .0. ) ) |
|
| 78 | 8 9 77 | sylanbrc | |- ( ( ph /\ ( x e. B /\ x =/= .0. ) ) -> I e. ( B \ { .0. } ) ) |
| 79 | 27 78 | sylan2b | |- ( ( ph /\ x e. ( B \ { .0. } ) ) -> I e. ( B \ { .0. } ) ) |
| 80 | 27 10 | sylan2b | |- ( ( ph /\ x e. ( B \ { .0. } ) ) -> ( I .x. x ) = .1. ) |
| 81 | 18 26 44 61 67 76 79 80 | isgrpd | |- ( ph -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) |
| 82 | 3 | sneqd | |- ( ph -> { .0. } = { ( 0g ` R ) } ) |
| 83 | 1 82 | difeq12d | |- ( ph -> ( B \ { .0. } ) = ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
| 84 | 83 | oveq2d | |- ( ph -> ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) ) |
| 85 | 84 | eleq1d | |- ( ph -> ( ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp <-> ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) |
| 86 | 85 | anbi2d | |- ( ph -> ( ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( B \ { .0. } ) ) e. Grp ) <-> ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) ) |
| 87 | 5 81 86 | mpbi2and | |- ( ph -> ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) |
| 88 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 89 | eqid | |- ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) = ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) |
|
| 90 | 15 88 89 | isdrng2 | |- ( R e. DivRing <-> ( R e. Ring /\ ( ( mulGrp ` R ) |`s ( ( Base ` R ) \ { ( 0g ` R ) } ) ) e. Grp ) ) |
| 91 | 87 90 | sylibr | |- ( ph -> R e. DivRing ) |