This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iscmet3 . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscmet3.1 | |- Z = ( ZZ>= ` M ) |
|
| Assertion | iscmet3lem3 | |- ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | simpl | |- ( ( M e. ZZ /\ R e. RR+ ) -> M e. ZZ ) |
|
| 3 | simpr | |- ( ( M e. ZZ /\ R e. RR+ ) -> R e. RR+ ) |
|
| 4 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 5 | 4 1 | eleq2s | |- ( k e. Z -> k e. ZZ ) |
| 6 | 5 | adantl | |- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> k e. ZZ ) |
| 7 | oveq2 | |- ( n = k -> ( ( 1 / 2 ) ^ n ) = ( ( 1 / 2 ) ^ k ) ) |
|
| 8 | eqid | |- ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) = ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |
|
| 9 | ovex | |- ( ( 1 / 2 ) ^ k ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( k e. ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 11 | 6 10 | syl | |- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ` k ) = ( ( 1 / 2 ) ^ k ) ) |
| 12 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 13 | 12 | reseq2i | |- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) |
| 14 | nn0ssz | |- NN0 C_ ZZ |
|
| 15 | resmpt | |- ( NN0 C_ ZZ -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ) |
|
| 16 | 14 15 | ax-mp | |- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` NN0 ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
| 17 | 13 16 | eqtr3i | |- ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) = ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) |
| 18 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 19 | 18 | a1i | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( 1 / 2 ) e. CC ) |
| 20 | halfre | |- ( 1 / 2 ) e. RR |
|
| 21 | halfge0 | |- 0 <_ ( 1 / 2 ) |
|
| 22 | absid | |- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
|
| 23 | 20 21 22 | mp2an | |- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
| 24 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 25 | 23 24 | eqbrtri | |- ( abs ` ( 1 / 2 ) ) < 1 |
| 26 | 25 | a1i | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( abs ` ( 1 / 2 ) ) < 1 ) |
| 27 | 19 26 | expcnv | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. NN0 |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
| 28 | 17 27 | eqbrtrid | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 ) |
| 29 | 0z | |- 0 e. ZZ |
|
| 30 | zex | |- ZZ e. _V |
|
| 31 | 30 | mptex | |- ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V |
| 32 | 31 | a1i | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) |
| 33 | climres | |- ( ( 0 e. ZZ /\ ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) e. _V ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) |
|
| 34 | 29 32 33 | sylancr | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( ( ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) |` ( ZZ>= ` 0 ) ) ~~> 0 <-> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) ) |
| 35 | 28 34 | mpbid | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( n e. ZZ |-> ( ( 1 / 2 ) ^ n ) ) ~~> 0 ) |
| 36 | 1 2 3 11 35 | climi0 | |- ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R ) |
| 37 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 38 | 1rp | |- 1 e. RR+ |
|
| 39 | rphalfcl | |- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
|
| 40 | 38 39 | ax-mp | |- ( 1 / 2 ) e. RR+ |
| 41 | rpexpcl | |- ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
|
| 42 | 40 6 41 | sylancr | |- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) |
| 43 | rpre | |- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( ( 1 / 2 ) ^ k ) e. RR ) |
|
| 44 | rpge0 | |- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> 0 <_ ( ( 1 / 2 ) ^ k ) ) |
|
| 45 | 43 44 | absidd | |- ( ( ( 1 / 2 ) ^ k ) e. RR+ -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) |
| 46 | 42 45 | syl | |- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( abs ` ( ( 1 / 2 ) ^ k ) ) = ( ( 1 / 2 ) ^ k ) ) |
| 47 | 46 | breq1d | |- ( ( ( M e. ZZ /\ R e. RR+ ) /\ k e. Z ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
| 48 | 37 47 | sylan2 | |- ( ( ( M e. ZZ /\ R e. RR+ ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
| 49 | 48 | anassrs | |- ( ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> ( ( 1 / 2 ) ^ k ) < R ) ) |
| 50 | 49 | ralbidva | |- ( ( ( M e. ZZ /\ R e. RR+ ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) |
| 51 | 50 | rexbidva | |- ( ( M e. ZZ /\ R e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( 1 / 2 ) ^ k ) ) < R <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) ) |
| 52 | 36 51 | mpbid | |- ( ( M e. ZZ /\ R e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < R ) |