This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem11.a | |- A e. X |
||
| ipasslem11.b | |- B e. X |
||
| Assertion | ipasslem11 | |- ( C e. CC -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem11.a | |- A e. X |
|
| 7 | ipasslem11.b | |- B e. X |
|
| 8 | cnre | |- ( C e. CC -> E. x e. RR E. y e. RR C = ( x + ( _i x. y ) ) ) |
|
| 9 | ax-icn | |- _i e. CC |
|
| 10 | recn | |- ( y e. RR -> y e. CC ) |
|
| 11 | mulcom | |- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) = ( y x. _i ) ) |
|
| 12 | 9 10 11 | sylancr | |- ( y e. RR -> ( _i x. y ) = ( y x. _i ) ) |
| 13 | 12 | adantl | |- ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) = ( y x. _i ) ) |
| 14 | 13 | oveq2d | |- ( ( x e. RR /\ y e. RR ) -> ( x + ( _i x. y ) ) = ( x + ( y x. _i ) ) ) |
| 15 | 14 | eqeq2d | |- ( ( x e. RR /\ y e. RR ) -> ( C = ( x + ( _i x. y ) ) <-> C = ( x + ( y x. _i ) ) ) ) |
| 16 | recn | |- ( x e. RR -> x e. CC ) |
|
| 17 | 5 | phnvi | |- U e. NrmCVec |
| 18 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ x e. CC /\ A e. X ) -> ( x S A ) e. X ) |
| 19 | 17 6 18 | mp3an13 | |- ( x e. CC -> ( x S A ) e. X ) |
| 20 | 16 19 | syl | |- ( x e. RR -> ( x S A ) e. X ) |
| 21 | mulcl | |- ( ( y e. CC /\ _i e. CC ) -> ( y x. _i ) e. CC ) |
|
| 22 | 10 9 21 | sylancl | |- ( y e. RR -> ( y x. _i ) e. CC ) |
| 23 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ ( y x. _i ) e. CC /\ A e. X ) -> ( ( y x. _i ) S A ) e. X ) |
| 24 | 17 6 23 | mp3an13 | |- ( ( y x. _i ) e. CC -> ( ( y x. _i ) S A ) e. X ) |
| 25 | 22 24 | syl | |- ( y e. RR -> ( ( y x. _i ) S A ) e. X ) |
| 26 | 1 2 3 4 5 | ipdiri | |- ( ( ( x S A ) e. X /\ ( ( y x. _i ) S A ) e. X /\ B e. X ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) ) |
| 27 | 7 26 | mp3an3 | |- ( ( ( x S A ) e. X /\ ( ( y x. _i ) S A ) e. X ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) ) |
| 28 | 20 25 27 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) ) |
| 29 | 1 2 3 4 5 6 7 | ipasslem9 | |- ( x e. RR -> ( ( x S A ) P B ) = ( x x. ( A P B ) ) ) |
| 30 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ _i e. CC /\ A e. X ) -> ( _i S A ) e. X ) |
| 31 | 17 9 6 30 | mp3an | |- ( _i S A ) e. X |
| 32 | 1 2 3 4 5 31 7 | ipasslem9 | |- ( y e. RR -> ( ( y S ( _i S A ) ) P B ) = ( y x. ( ( _i S A ) P B ) ) ) |
| 33 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( y e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 34 | 17 33 | mpan | |- ( ( y e. CC /\ _i e. CC /\ A e. X ) -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 35 | 9 6 34 | mp3an23 | |- ( y e. CC -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 36 | 10 35 | syl | |- ( y e. RR -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 37 | 36 | oveq1d | |- ( y e. RR -> ( ( ( y x. _i ) S A ) P B ) = ( ( y S ( _i S A ) ) P B ) ) |
| 38 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 39 | 17 6 7 38 | mp3an | |- ( A P B ) e. CC |
| 40 | mulass | |- ( ( y e. CC /\ _i e. CC /\ ( A P B ) e. CC ) -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( _i x. ( A P B ) ) ) ) |
|
| 41 | 9 39 40 | mp3an23 | |- ( y e. CC -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( _i x. ( A P B ) ) ) ) |
| 42 | 10 41 | syl | |- ( y e. RR -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( _i x. ( A P B ) ) ) ) |
| 43 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 44 | 1 2 3 4 5 6 7 43 | ipasslem10 | |- ( ( _i S A ) P B ) = ( _i x. ( A P B ) ) |
| 45 | 44 | oveq2i | |- ( y x. ( ( _i S A ) P B ) ) = ( y x. ( _i x. ( A P B ) ) ) |
| 46 | 42 45 | eqtr4di | |- ( y e. RR -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( ( _i S A ) P B ) ) ) |
| 47 | 32 37 46 | 3eqtr4d | |- ( y e. RR -> ( ( ( y x. _i ) S A ) P B ) = ( ( y x. _i ) x. ( A P B ) ) ) |
| 48 | 29 47 | oveqan12d | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 49 | 28 48 | eqtrd | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 50 | 1 2 3 | nvdir | |- ( ( U e. NrmCVec /\ ( x e. CC /\ ( y x. _i ) e. CC /\ A e. X ) ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 51 | 17 50 | mpan | |- ( ( x e. CC /\ ( y x. _i ) e. CC /\ A e. X ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 52 | 6 51 | mp3an3 | |- ( ( x e. CC /\ ( y x. _i ) e. CC ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 53 | 16 22 52 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 54 | 53 | oveq1d | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( y x. _i ) ) S A ) P B ) = ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) ) |
| 55 | adddir | |- ( ( x e. CC /\ ( y x. _i ) e. CC /\ ( A P B ) e. CC ) -> ( ( x + ( y x. _i ) ) x. ( A P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
|
| 56 | 39 55 | mp3an3 | |- ( ( x e. CC /\ ( y x. _i ) e. CC ) -> ( ( x + ( y x. _i ) ) x. ( A P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 57 | 16 22 56 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( y x. _i ) ) x. ( A P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 58 | 49 54 57 | 3eqtr4d | |- ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( y x. _i ) ) S A ) P B ) = ( ( x + ( y x. _i ) ) x. ( A P B ) ) ) |
| 59 | oveq1 | |- ( C = ( x + ( y x. _i ) ) -> ( C S A ) = ( ( x + ( y x. _i ) ) S A ) ) |
|
| 60 | 59 | oveq1d | |- ( C = ( x + ( y x. _i ) ) -> ( ( C S A ) P B ) = ( ( ( x + ( y x. _i ) ) S A ) P B ) ) |
| 61 | oveq1 | |- ( C = ( x + ( y x. _i ) ) -> ( C x. ( A P B ) ) = ( ( x + ( y x. _i ) ) x. ( A P B ) ) ) |
|
| 62 | 60 61 | eqeq12d | |- ( C = ( x + ( y x. _i ) ) -> ( ( ( C S A ) P B ) = ( C x. ( A P B ) ) <-> ( ( ( x + ( y x. _i ) ) S A ) P B ) = ( ( x + ( y x. _i ) ) x. ( A P B ) ) ) ) |
| 63 | 58 62 | syl5ibrcom | |- ( ( x e. RR /\ y e. RR ) -> ( C = ( x + ( y x. _i ) ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 64 | 15 63 | sylbid | |- ( ( x e. RR /\ y e. RR ) -> ( C = ( x + ( _i x. y ) ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 65 | 64 | rexlimivv | |- ( E. x e. RR E. y e. RR C = ( x + ( _i x. y ) ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |
| 66 | 8 65 | syl | |- ( C e. CC -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |