This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for the imaginary number _i . (Contributed by NM, 24-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| ip1i.2 | |- G = ( +v ` U ) |
||
| ip1i.4 | |- S = ( .sOLD ` U ) |
||
| ip1i.7 | |- P = ( .iOLD ` U ) |
||
| ip1i.9 | |- U e. CPreHilOLD |
||
| ipasslem10.a | |- A e. X |
||
| ipasslem10.b | |- B e. X |
||
| ipasslem10.6 | |- N = ( normCV ` U ) |
||
| Assertion | ipasslem10 | |- ( ( _i S A ) P B ) = ( _i x. ( A P B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ip1i.2 | |- G = ( +v ` U ) |
|
| 3 | ip1i.4 | |- S = ( .sOLD ` U ) |
|
| 4 | ip1i.7 | |- P = ( .iOLD ` U ) |
|
| 5 | ip1i.9 | |- U e. CPreHilOLD |
|
| 6 | ipasslem10.a | |- A e. X |
|
| 7 | ipasslem10.b | |- B e. X |
|
| 8 | ipasslem10.6 | |- N = ( normCV ` U ) |
|
| 9 | 5 | phnvi | |- U e. NrmCVec |
| 10 | ax-icn | |- _i e. CC |
|
| 11 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ _i e. CC /\ A e. X ) -> ( _i S A ) e. X ) |
| 12 | 9 10 6 11 | mp3an | |- ( _i S A ) e. X |
| 13 | 1 2 3 8 4 | 4ipval2 | |- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( 4 x. ( B P ( _i S A ) ) ) = ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) ) |
| 14 | 9 7 12 13 | mp3an | |- ( 4 x. ( B P ( _i S A ) ) ) = ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) |
| 15 | 4cn | |- 4 e. CC |
|
| 16 | negicn | |- -u _i e. CC |
|
| 17 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B P A ) e. CC ) |
| 18 | 9 7 6 17 | mp3an | |- ( B P A ) e. CC |
| 19 | 15 16 18 | mul12i | |- ( 4 x. ( -u _i x. ( B P A ) ) ) = ( -u _i x. ( 4 x. ( B P A ) ) ) |
| 20 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( B G ( _i S A ) ) e. X ) |
| 21 | 9 7 12 20 | mp3an | |- ( B G ( _i S A ) ) e. X |
| 22 | 1 8 9 21 | nvcli | |- ( N ` ( B G ( _i S A ) ) ) e. RR |
| 23 | 22 | recni | |- ( N ` ( B G ( _i S A ) ) ) e. CC |
| 24 | 23 | sqcli | |- ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) e. CC |
| 25 | neg1cn | |- -u 1 e. CC |
|
| 26 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ ( _i S A ) e. X ) -> ( -u 1 S ( _i S A ) ) e. X ) |
| 27 | 9 25 12 26 | mp3an | |- ( -u 1 S ( _i S A ) ) e. X |
| 28 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( -u 1 S ( _i S A ) ) e. X ) -> ( B G ( -u 1 S ( _i S A ) ) ) e. X ) |
| 29 | 9 7 27 28 | mp3an | |- ( B G ( -u 1 S ( _i S A ) ) ) e. X |
| 30 | 1 8 9 29 | nvcli | |- ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) e. RR |
| 31 | 30 | recni | |- ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) e. CC |
| 32 | 31 | sqcli | |- ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) e. CC |
| 33 | 24 32 | subcli | |- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) e. CC |
| 34 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ _i e. CC /\ ( _i S A ) e. X ) -> ( _i S ( _i S A ) ) e. X ) |
| 35 | 9 10 12 34 | mp3an | |- ( _i S ( _i S A ) ) e. X |
| 36 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( _i S ( _i S A ) ) e. X ) -> ( B G ( _i S ( _i S A ) ) ) e. X ) |
| 37 | 9 7 35 36 | mp3an | |- ( B G ( _i S ( _i S A ) ) ) e. X |
| 38 | 1 8 9 37 | nvcli | |- ( N ` ( B G ( _i S ( _i S A ) ) ) ) e. RR |
| 39 | 38 | recni | |- ( N ` ( B G ( _i S ( _i S A ) ) ) ) e. CC |
| 40 | 39 | sqcli | |- ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) e. CC |
| 41 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u _i e. CC /\ ( _i S A ) e. X ) -> ( -u _i S ( _i S A ) ) e. X ) |
| 42 | 9 16 12 41 | mp3an | |- ( -u _i S ( _i S A ) ) e. X |
| 43 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( -u _i S ( _i S A ) ) e. X ) -> ( B G ( -u _i S ( _i S A ) ) ) e. X ) |
| 44 | 9 7 42 43 | mp3an | |- ( B G ( -u _i S ( _i S A ) ) ) e. X |
| 45 | 1 8 9 44 | nvcli | |- ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) e. RR |
| 46 | 45 | recni | |- ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) e. CC |
| 47 | 46 | sqcli | |- ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) e. CC |
| 48 | 40 47 | subcli | |- ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) e. CC |
| 49 | 10 48 | mulcli | |- ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) e. CC |
| 50 | 33 49 | addcomi | |- ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) = ( ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) ) |
| 51 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B G A ) e. X ) |
| 52 | 9 7 6 51 | mp3an | |- ( B G A ) e. X |
| 53 | 1 8 9 52 | nvcli | |- ( N ` ( B G A ) ) e. RR |
| 54 | 53 | recni | |- ( N ` ( B G A ) ) e. CC |
| 55 | 54 | sqcli | |- ( ( N ` ( B G A ) ) ^ 2 ) e. CC |
| 56 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 57 | 9 25 6 56 | mp3an | |- ( -u 1 S A ) e. X |
| 58 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( -u 1 S A ) e. X ) -> ( B G ( -u 1 S A ) ) e. X ) |
| 59 | 9 7 57 58 | mp3an | |- ( B G ( -u 1 S A ) ) e. X |
| 60 | 1 8 9 59 | nvcli | |- ( N ` ( B G ( -u 1 S A ) ) ) e. RR |
| 61 | 60 | recni | |- ( N ` ( B G ( -u 1 S A ) ) ) e. CC |
| 62 | 61 | sqcli | |- ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) e. CC |
| 63 | 55 62 | subcli | |- ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) e. CC |
| 64 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u _i e. CC /\ A e. X ) -> ( -u _i S A ) e. X ) |
| 65 | 9 16 6 64 | mp3an | |- ( -u _i S A ) e. X |
| 66 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( -u _i S A ) e. X ) -> ( B G ( -u _i S A ) ) e. X ) |
| 67 | 9 7 65 66 | mp3an | |- ( B G ( -u _i S A ) ) e. X |
| 68 | 1 8 9 67 | nvcli | |- ( N ` ( B G ( -u _i S A ) ) ) e. RR |
| 69 | 68 | recni | |- ( N ` ( B G ( -u _i S A ) ) ) e. CC |
| 70 | 69 | sqcli | |- ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) e. CC |
| 71 | 24 70 | subcli | |- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) e. CC |
| 72 | 10 71 | mulcli | |- ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) e. CC |
| 73 | 16 63 72 | adddii | |- ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) = ( ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) + ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
| 74 | 10 10 6 | 3pm3.2i | |- ( _i e. CC /\ _i e. CC /\ A e. X ) |
| 75 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( _i e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( _i x. _i ) S A ) = ( _i S ( _i S A ) ) ) |
| 76 | 9 74 75 | mp2an | |- ( ( _i x. _i ) S A ) = ( _i S ( _i S A ) ) |
| 77 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 78 | 77 | oveq1i | |- ( ( _i x. _i ) S A ) = ( -u 1 S A ) |
| 79 | 76 78 | eqtr3i | |- ( _i S ( _i S A ) ) = ( -u 1 S A ) |
| 80 | 79 | oveq2i | |- ( B G ( _i S ( _i S A ) ) ) = ( B G ( -u 1 S A ) ) |
| 81 | 80 | fveq2i | |- ( N ` ( B G ( _i S ( _i S A ) ) ) ) = ( N ` ( B G ( -u 1 S A ) ) ) |
| 82 | 81 | oveq1i | |- ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) = ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) |
| 83 | 10 10 | mulneg1i | |- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 84 | 77 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 85 | negneg1e1 | |- -u -u 1 = 1 |
|
| 86 | 83 84 85 | 3eqtri | |- ( -u _i x. _i ) = 1 |
| 87 | 86 | oveq1i | |- ( ( -u _i x. _i ) S A ) = ( 1 S A ) |
| 88 | 16 10 6 | 3pm3.2i | |- ( -u _i e. CC /\ _i e. CC /\ A e. X ) |
| 89 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( -u _i e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( -u _i x. _i ) S A ) = ( -u _i S ( _i S A ) ) ) |
| 90 | 9 88 89 | mp2an | |- ( ( -u _i x. _i ) S A ) = ( -u _i S ( _i S A ) ) |
| 91 | 1 3 | nvsid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 S A ) = A ) |
| 92 | 9 6 91 | mp2an | |- ( 1 S A ) = A |
| 93 | 87 90 92 | 3eqtr3i | |- ( -u _i S ( _i S A ) ) = A |
| 94 | 93 | oveq2i | |- ( B G ( -u _i S ( _i S A ) ) ) = ( B G A ) |
| 95 | 94 | fveq2i | |- ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) = ( N ` ( B G A ) ) |
| 96 | 95 | oveq1i | |- ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) = ( ( N ` ( B G A ) ) ^ 2 ) |
| 97 | 82 96 | oveq12i | |- ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) = ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) |
| 98 | 97 | oveq2i | |- ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) ) |
| 99 | 63 | mulm1i | |- ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) = -u ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) |
| 100 | 55 62 | negsubdi2i | |- -u ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) = ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) |
| 101 | 99 100 | eqtr2i | |- ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) = ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
| 102 | 101 | oveq2i | |- ( _i x. ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) ) = ( _i x. ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) ) |
| 103 | 10 25 63 | mulassi | |- ( ( _i x. -u 1 ) x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) = ( _i x. ( -u 1 x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) ) |
| 104 | 102 103 | eqtr4i | |- ( _i x. ( ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) - ( ( N ` ( B G A ) ) ^ 2 ) ) ) = ( ( _i x. -u 1 ) x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
| 105 | 10 | mulm1i | |- ( -u 1 x. _i ) = -u _i |
| 106 | 25 10 105 | mulcomli | |- ( _i x. -u 1 ) = -u _i |
| 107 | 106 | oveq1i | |- ( ( _i x. -u 1 ) x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) = ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
| 108 | 98 104 107 | 3eqtri | |- ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) = ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) |
| 109 | 25 10 6 | 3pm3.2i | |- ( -u 1 e. CC /\ _i e. CC /\ A e. X ) |
| 110 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( -u 1 x. _i ) S A ) = ( -u 1 S ( _i S A ) ) ) |
| 111 | 9 109 110 | mp2an | |- ( ( -u 1 x. _i ) S A ) = ( -u 1 S ( _i S A ) ) |
| 112 | 105 | oveq1i | |- ( ( -u 1 x. _i ) S A ) = ( -u _i S A ) |
| 113 | 111 112 | eqtr3i | |- ( -u 1 S ( _i S A ) ) = ( -u _i S A ) |
| 114 | 113 | oveq2i | |- ( B G ( -u 1 S ( _i S A ) ) ) = ( B G ( -u _i S A ) ) |
| 115 | 114 | fveq2i | |- ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) |
| 116 | 115 | oveq1i | |- ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) = ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) |
| 117 | 116 | oveq2i | |- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) |
| 118 | 71 | mullidi | |- ( 1 x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) = ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) |
| 119 | 117 118 | eqtr4i | |- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( 1 x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) |
| 120 | 86 | oveq1i | |- ( ( -u _i x. _i ) x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) = ( 1 x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) |
| 121 | 119 120 | eqtr4i | |- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( ( -u _i x. _i ) x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) |
| 122 | 16 10 71 | mulassi | |- ( ( -u _i x. _i ) x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) = ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) |
| 123 | 121 122 | eqtri | |- ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) = ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) |
| 124 | 108 123 | oveq12i | |- ( ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) ) = ( ( -u _i x. ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) ) + ( -u _i x. ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
| 125 | 73 124 | eqtr4i | |- ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) = ( ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) + ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) ) |
| 126 | 50 125 | eqtr4i | |- ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) = ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
| 127 | 1 2 3 8 4 | 4ipval2 | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( 4 x. ( B P A ) ) = ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
| 128 | 9 7 6 127 | mp3an | |- ( 4 x. ( B P A ) ) = ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) |
| 129 | 128 | oveq2i | |- ( -u _i x. ( 4 x. ( B P A ) ) ) = ( -u _i x. ( ( ( ( N ` ( B G A ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S A ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S A ) ) ) ^ 2 ) ) ) ) ) |
| 130 | 126 129 | eqtr4i | |- ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) = ( -u _i x. ( 4 x. ( B P A ) ) ) |
| 131 | 19 130 | eqtr4i | |- ( 4 x. ( -u _i x. ( B P A ) ) ) = ( ( ( ( N ` ( B G ( _i S A ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u 1 S ( _i S A ) ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( B G ( _i S ( _i S A ) ) ) ) ^ 2 ) - ( ( N ` ( B G ( -u _i S ( _i S A ) ) ) ) ^ 2 ) ) ) ) |
| 132 | 14 131 | eqtr4i | |- ( 4 x. ( B P ( _i S A ) ) ) = ( 4 x. ( -u _i x. ( B P A ) ) ) |
| 133 | 1 4 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( B P ( _i S A ) ) e. CC ) |
| 134 | 9 7 12 133 | mp3an | |- ( B P ( _i S A ) ) e. CC |
| 135 | 16 18 | mulcli | |- ( -u _i x. ( B P A ) ) e. CC |
| 136 | 4ne0 | |- 4 =/= 0 |
|
| 137 | 134 135 15 136 | mulcani | |- ( ( 4 x. ( B P ( _i S A ) ) ) = ( 4 x. ( -u _i x. ( B P A ) ) ) <-> ( B P ( _i S A ) ) = ( -u _i x. ( B P A ) ) ) |
| 138 | 132 137 | mpbi | |- ( B P ( _i S A ) ) = ( -u _i x. ( B P A ) ) |
| 139 | 138 | fveq2i | |- ( * ` ( B P ( _i S A ) ) ) = ( * ` ( -u _i x. ( B P A ) ) ) |
| 140 | 1 4 | dipcj | |- ( ( U e. NrmCVec /\ B e. X /\ ( _i S A ) e. X ) -> ( * ` ( B P ( _i S A ) ) ) = ( ( _i S A ) P B ) ) |
| 141 | 9 7 12 140 | mp3an | |- ( * ` ( B P ( _i S A ) ) ) = ( ( _i S A ) P B ) |
| 142 | 16 18 | cjmuli | |- ( * ` ( -u _i x. ( B P A ) ) ) = ( ( * ` -u _i ) x. ( * ` ( B P A ) ) ) |
| 143 | 25 10 | cjmuli | |- ( * ` ( -u 1 x. _i ) ) = ( ( * ` -u 1 ) x. ( * ` _i ) ) |
| 144 | 105 | fveq2i | |- ( * ` ( -u 1 x. _i ) ) = ( * ` -u _i ) |
| 145 | neg1rr | |- -u 1 e. RR |
|
| 146 | 25 | cjrebi | |- ( -u 1 e. RR <-> ( * ` -u 1 ) = -u 1 ) |
| 147 | 145 146 | mpbi | |- ( * ` -u 1 ) = -u 1 |
| 148 | cji | |- ( * ` _i ) = -u _i |
|
| 149 | 147 148 | oveq12i | |- ( ( * ` -u 1 ) x. ( * ` _i ) ) = ( -u 1 x. -u _i ) |
| 150 | ax-1cn | |- 1 e. CC |
|
| 151 | 150 10 | mul2negi | |- ( -u 1 x. -u _i ) = ( 1 x. _i ) |
| 152 | 10 | mullidi | |- ( 1 x. _i ) = _i |
| 153 | 149 151 152 | 3eqtri | |- ( ( * ` -u 1 ) x. ( * ` _i ) ) = _i |
| 154 | 143 144 153 | 3eqtr3i | |- ( * ` -u _i ) = _i |
| 155 | 1 4 | dipcj | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
| 156 | 9 7 6 155 | mp3an | |- ( * ` ( B P A ) ) = ( A P B ) |
| 157 | 154 156 | oveq12i | |- ( ( * ` -u _i ) x. ( * ` ( B P A ) ) ) = ( _i x. ( A P B ) ) |
| 158 | 142 157 | eqtri | |- ( * ` ( -u _i x. ( B P A ) ) ) = ( _i x. ( A P B ) ) |
| 159 | 139 141 158 | 3eqtr3i | |- ( ( _i S A ) P B ) = ( _i x. ( A P B ) ) |