This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipassi . Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipasslem11.a | ⊢ 𝐴 ∈ 𝑋 | ||
| ipasslem11.b | ⊢ 𝐵 ∈ 𝑋 | ||
| Assertion | ipasslem11 | ⊢ ( 𝐶 ∈ ℂ → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip1i.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip1i.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | ip1i.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | ip1i.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 5 | ip1i.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 6 | ipasslem11.a | ⊢ 𝐴 ∈ 𝑋 | |
| 7 | ipasslem11.b | ⊢ 𝐵 ∈ 𝑋 | |
| 8 | cnre | ⊢ ( 𝐶 ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐶 = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 9 | ax-icn | ⊢ i ∈ ℂ | |
| 10 | recn | ⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) | |
| 11 | mulcom | ⊢ ( ( i ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( i · 𝑦 ) = ( 𝑦 · i ) ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 𝑦 ∈ ℝ → ( i · 𝑦 ) = ( 𝑦 · i ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( i · 𝑦 ) = ( 𝑦 · i ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + ( i · 𝑦 ) ) = ( 𝑥 + ( 𝑦 · i ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐶 = ( 𝑥 + ( i · 𝑦 ) ) ↔ 𝐶 = ( 𝑥 + ( 𝑦 · i ) ) ) ) |
| 16 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 17 | 5 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 18 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
| 19 | 17 6 18 | mp3an13 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
| 20 | 16 19 | syl | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ) |
| 21 | mulcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝑦 · i ) ∈ ℂ ) | |
| 22 | 10 9 21 | sylancl | ⊢ ( 𝑦 ∈ ℝ → ( 𝑦 · i ) ∈ ℂ ) |
| 23 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑦 · i ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑦 · i ) 𝑆 𝐴 ) ∈ 𝑋 ) |
| 24 | 17 6 23 | mp3an13 | ⊢ ( ( 𝑦 · i ) ∈ ℂ → ( ( 𝑦 · i ) 𝑆 𝐴 ) ∈ 𝑋 ) |
| 25 | 22 24 | syl | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 · i ) 𝑆 𝐴 ) ∈ 𝑋 ) |
| 26 | 1 2 3 4 5 | ipdiri | ⊢ ( ( ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ∧ ( ( 𝑦 · i ) 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) + ( ( ( 𝑦 · i ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 27 | 7 26 | mp3an3 | ⊢ ( ( ( 𝑥 𝑆 𝐴 ) ∈ 𝑋 ∧ ( ( 𝑦 · i ) 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) + ( ( ( 𝑦 · i ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 28 | 20 25 27 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) + ( ( ( 𝑦 · i ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 29 | 1 2 3 4 5 6 7 | ipasslem9 | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 30 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( i 𝑆 𝐴 ) ∈ 𝑋 ) |
| 31 | 17 9 6 30 | mp3an | ⊢ ( i 𝑆 𝐴 ) ∈ 𝑋 |
| 32 | 1 2 3 4 5 31 7 | ipasslem9 | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 𝑆 ( i 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( 𝑦 · ( ( i 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 33 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑦 · i ) 𝑆 𝐴 ) = ( 𝑦 𝑆 ( i 𝑆 𝐴 ) ) ) |
| 34 | 17 33 | mpan | ⊢ ( ( 𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑦 · i ) 𝑆 𝐴 ) = ( 𝑦 𝑆 ( i 𝑆 𝐴 ) ) ) |
| 35 | 9 6 34 | mp3an23 | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 · i ) 𝑆 𝐴 ) = ( 𝑦 𝑆 ( i 𝑆 𝐴 ) ) ) |
| 36 | 10 35 | syl | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 · i ) 𝑆 𝐴 ) = ( 𝑦 𝑆 ( i 𝑆 𝐴 ) ) ) |
| 37 | 36 | oveq1d | ⊢ ( 𝑦 ∈ ℝ → ( ( ( 𝑦 · i ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑦 𝑆 ( i 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) |
| 38 | 1 4 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| 39 | 17 6 7 38 | mp3an | ⊢ ( 𝐴 𝑃 𝐵 ) ∈ ℂ |
| 40 | mulass | ⊢ ( ( 𝑦 ∈ ℂ ∧ i ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑦 · ( i · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 41 | 9 39 40 | mp3an23 | ⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑦 · ( i · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 42 | 10 41 | syl | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑦 · ( i · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 43 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 44 | 1 2 3 4 5 6 7 43 | ipasslem10 | ⊢ ( ( i 𝑆 𝐴 ) 𝑃 𝐵 ) = ( i · ( 𝐴 𝑃 𝐵 ) ) |
| 45 | 44 | oveq2i | ⊢ ( 𝑦 · ( ( i 𝑆 𝐴 ) 𝑃 𝐵 ) ) = ( 𝑦 · ( i · ( 𝐴 𝑃 𝐵 ) ) ) |
| 46 | 42 45 | eqtr4di | ⊢ ( 𝑦 ∈ ℝ → ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) = ( 𝑦 · ( ( i 𝑆 𝐴 ) 𝑃 𝐵 ) ) ) |
| 47 | 32 37 46 | 3eqtr4d | ⊢ ( 𝑦 ∈ ℝ → ( ( ( 𝑦 · i ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 48 | 29 47 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 𝑆 𝐴 ) 𝑃 𝐵 ) + ( ( ( 𝑦 · i ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) = ( ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) + ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 49 | 28 48 | eqtrd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) = ( ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) + ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 50 | 1 2 3 | nvdir | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑦 · i ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) = ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) ) |
| 51 | 17 50 | mpan | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 · i ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) = ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) ) |
| 52 | 6 51 | mp3an3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 · i ) ∈ ℂ ) → ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) = ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) ) |
| 53 | 16 22 52 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) = ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) ) |
| 54 | 53 | oveq1d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑥 𝑆 𝐴 ) 𝐺 ( ( 𝑦 · i ) 𝑆 𝐴 ) ) 𝑃 𝐵 ) ) |
| 55 | adddir | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 · i ) ∈ ℂ ∧ ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) → ( ( 𝑥 + ( 𝑦 · i ) ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) + ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) ) ) | |
| 56 | 39 55 | mp3an3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 · i ) ∈ ℂ ) → ( ( 𝑥 + ( 𝑦 · i ) ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) + ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 57 | 16 22 56 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 + ( 𝑦 · i ) ) · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑥 · ( 𝐴 𝑃 𝐵 ) ) + ( ( 𝑦 · i ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 58 | 49 54 57 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑥 + ( 𝑦 · i ) ) · ( 𝐴 𝑃 𝐵 ) ) ) |
| 59 | oveq1 | ⊢ ( 𝐶 = ( 𝑥 + ( 𝑦 · i ) ) → ( 𝐶 𝑆 𝐴 ) = ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) ) | |
| 60 | 59 | oveq1d | ⊢ ( 𝐶 = ( 𝑥 + ( 𝑦 · i ) ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) 𝑃 𝐵 ) ) |
| 61 | oveq1 | ⊢ ( 𝐶 = ( 𝑥 + ( 𝑦 · i ) ) → ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) = ( ( 𝑥 + ( 𝑦 · i ) ) · ( 𝐴 𝑃 𝐵 ) ) ) | |
| 62 | 60 61 | eqeq12d | ⊢ ( 𝐶 = ( 𝑥 + ( 𝑦 · i ) ) → ( ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ↔ ( ( ( 𝑥 + ( 𝑦 · i ) ) 𝑆 𝐴 ) 𝑃 𝐵 ) = ( ( 𝑥 + ( 𝑦 · i ) ) · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 63 | 58 62 | syl5ibrcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐶 = ( 𝑥 + ( 𝑦 · i ) ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 64 | 15 63 | sylbid | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐶 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) ) |
| 65 | 64 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝐶 = ( 𝑥 + ( i · 𝑦 ) ) → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |
| 66 | 8 65 | syl | ⊢ ( 𝐶 ∈ ℂ → ( ( 𝐶 𝑆 𝐴 ) 𝑃 𝐵 ) = ( 𝐶 · ( 𝐴 𝑃 𝐵 ) ) ) |