This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that F is a Cauchy sequence. (Contributed by NM, 4-Apr-2005) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caurcvg.1 | |- Z = ( ZZ>= ` M ) |
|
| caurcvg.3 | |- ( ph -> F : Z --> RR ) |
||
| caurcvg.4 | |- ( ph -> A. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) |
||
| Assertion | caurcvg | |- ( ph -> F ~~> ( limsup ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvg.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | caurcvg.3 | |- ( ph -> F : Z --> RR ) |
|
| 3 | caurcvg.4 | |- ( ph -> A. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) |
|
| 4 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 5 | 1 4 | eqsstri | |- Z C_ ZZ |
| 6 | zssre | |- ZZ C_ RR |
|
| 7 | 5 6 | sstri | |- Z C_ RR |
| 8 | 7 | a1i | |- ( ph -> Z C_ RR ) |
| 9 | 1rp | |- 1 e. RR+ |
|
| 10 | 9 | ne0ii | |- RR+ =/= (/) |
| 11 | r19.2z | |- ( ( RR+ =/= (/) /\ A. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) -> E. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) |
|
| 12 | 10 3 11 | sylancr | |- ( ph -> E. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) |
| 13 | eluzel2 | |- ( m e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 14 | 13 1 | eleq2s | |- ( m e. Z -> M e. ZZ ) |
| 15 | 1 | uzsup | |- ( M e. ZZ -> sup ( Z , RR* , < ) = +oo ) |
| 16 | 14 15 | syl | |- ( m e. Z -> sup ( Z , RR* , < ) = +oo ) |
| 17 | 16 | a1d | |- ( m e. Z -> ( A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> sup ( Z , RR* , < ) = +oo ) ) |
| 18 | 17 | rexlimiv | |- ( E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> sup ( Z , RR* , < ) = +oo ) |
| 19 | 18 | rexlimivw | |- ( E. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> sup ( Z , RR* , < ) = +oo ) |
| 20 | 12 19 | syl | |- ( ph -> sup ( Z , RR* , < ) = +oo ) |
| 21 | 5 | sseli | |- ( m e. Z -> m e. ZZ ) |
| 22 | 5 | sseli | |- ( k e. Z -> k e. ZZ ) |
| 23 | eluz | |- ( ( m e. ZZ /\ k e. ZZ ) -> ( k e. ( ZZ>= ` m ) <-> m <_ k ) ) |
|
| 24 | 21 22 23 | syl2an | |- ( ( m e. Z /\ k e. Z ) -> ( k e. ( ZZ>= ` m ) <-> m <_ k ) ) |
| 25 | 24 | biimprd | |- ( ( m e. Z /\ k e. Z ) -> ( m <_ k -> k e. ( ZZ>= ` m ) ) ) |
| 26 | 25 | expimpd | |- ( m e. Z -> ( ( k e. Z /\ m <_ k ) -> k e. ( ZZ>= ` m ) ) ) |
| 27 | 26 | imim1d | |- ( m e. Z -> ( ( k e. ( ZZ>= ` m ) -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) -> ( ( k e. Z /\ m <_ k ) -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) ) |
| 28 | 27 | exp4a | |- ( m e. Z -> ( ( k e. ( ZZ>= ` m ) -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) -> ( k e. Z -> ( m <_ k -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) ) ) |
| 29 | 28 | ralimdv2 | |- ( m e. Z -> ( A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> A. k e. Z ( m <_ k -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) ) |
| 30 | 29 | reximia | |- ( E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> E. m e. Z A. k e. Z ( m <_ k -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
| 31 | 30 | ralimi | |- ( A. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> A. x e. RR+ E. m e. Z A. k e. Z ( m <_ k -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
| 32 | 3 31 | syl | |- ( ph -> A. x e. RR+ E. m e. Z A. k e. Z ( m <_ k -> ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x ) ) |
| 33 | 8 2 20 32 | caurcvgr | |- ( ph -> F ~~>r ( limsup ` F ) ) |
| 34 | 14 | a1d | |- ( m e. Z -> ( A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> M e. ZZ ) ) |
| 35 | 34 | rexlimiv | |- ( E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> M e. ZZ ) |
| 36 | 35 | rexlimivw | |- ( E. x e. RR+ E. m e. Z A. k e. ( ZZ>= ` m ) ( abs ` ( ( F ` k ) - ( F ` m ) ) ) < x -> M e. ZZ ) |
| 37 | 12 36 | syl | |- ( ph -> M e. ZZ ) |
| 38 | ax-resscn | |- RR C_ CC |
|
| 39 | fss | |- ( ( F : Z --> RR /\ RR C_ CC ) -> F : Z --> CC ) |
|
| 40 | 2 38 39 | sylancl | |- ( ph -> F : Z --> CC ) |
| 41 | 1 37 40 | rlimclim | |- ( ph -> ( F ~~>r ( limsup ` F ) <-> F ~~> ( limsup ` F ) ) ) |
| 42 | 33 41 | mpbid | |- ( ph -> F ~~> ( limsup ` F ) ) |