This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011) (Proof shortened by Wolf Lammen, 30-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inssdif0 | |- ( ( A i^i B ) C_ C <-> ( A i^i ( B \ C ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 2 | 1 | imbi1i | |- ( ( x e. ( A i^i B ) -> x e. C ) <-> ( ( x e. A /\ x e. B ) -> x e. C ) ) |
| 3 | iman | |- ( ( ( x e. A /\ x e. B ) -> x e. C ) <-> -. ( ( x e. A /\ x e. B ) /\ -. x e. C ) ) |
|
| 4 | 2 3 | bitri | |- ( ( x e. ( A i^i B ) -> x e. C ) <-> -. ( ( x e. A /\ x e. B ) /\ -. x e. C ) ) |
| 5 | eldif | |- ( x e. ( B \ C ) <-> ( x e. B /\ -. x e. C ) ) |
|
| 6 | 5 | anbi2i | |- ( ( x e. A /\ x e. ( B \ C ) ) <-> ( x e. A /\ ( x e. B /\ -. x e. C ) ) ) |
| 7 | elin | |- ( x e. ( A i^i ( B \ C ) ) <-> ( x e. A /\ x e. ( B \ C ) ) ) |
|
| 8 | anass | |- ( ( ( x e. A /\ x e. B ) /\ -. x e. C ) <-> ( x e. A /\ ( x e. B /\ -. x e. C ) ) ) |
|
| 9 | 6 7 8 | 3bitr4ri | |- ( ( ( x e. A /\ x e. B ) /\ -. x e. C ) <-> x e. ( A i^i ( B \ C ) ) ) |
| 10 | 4 9 | xchbinx | |- ( ( x e. ( A i^i B ) -> x e. C ) <-> -. x e. ( A i^i ( B \ C ) ) ) |
| 11 | 10 | albii | |- ( A. x ( x e. ( A i^i B ) -> x e. C ) <-> A. x -. x e. ( A i^i ( B \ C ) ) ) |
| 12 | df-ss | |- ( ( A i^i B ) C_ C <-> A. x ( x e. ( A i^i B ) -> x e. C ) ) |
|
| 13 | eq0 | |- ( ( A i^i ( B \ C ) ) = (/) <-> A. x -. x e. ( A i^i ( B \ C ) ) ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( ( A i^i B ) C_ C <-> ( A i^i ( B \ C ) ) = (/) ) |