This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Axiom of Regularity using abbreviations. Axiom 6 of TakeutiZaring p. 21. This is called the "weak form". Axiom Reg of BellMachover p. 480. There is also a "strong form", not requiring that A be a set, that can be proved with more difficulty (see zfregs ). (Contributed by NM, 26-Nov-1995) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfreg | |- ( ( A e. V /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 2 | 1 | biimpi | |- ( A =/= (/) -> E. x x e. A ) |
| 3 | 2 | anim2i | |- ( ( A e. V /\ A =/= (/) ) -> ( A e. V /\ E. x x e. A ) ) |
| 4 | zfregcl | |- ( A e. V -> ( E. x x e. A -> E. x e. A A. y e. x -. y e. A ) ) |
|
| 5 | 4 | imp | |- ( ( A e. V /\ E. x x e. A ) -> E. x e. A A. y e. x -. y e. A ) |
| 6 | disj | |- ( ( x i^i A ) = (/) <-> A. y e. x -. y e. A ) |
|
| 7 | 6 | rexbii | |- ( E. x e. A ( x i^i A ) = (/) <-> E. x e. A A. y e. x -. y e. A ) |
| 8 | 7 | biimpri | |- ( E. x e. A A. y e. x -. y e. A -> E. x e. A ( x i^i A ) = (/) ) |
| 9 | 3 5 8 | 3syl | |- ( ( A e. V /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) |