This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imasubc . (Contributed by Zhi Wang, 7-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubclem1.f | |- ( ph -> F e. V ) |
|
| imasubclem1.g | |- ( ph -> G e. W ) |
||
| imasubclem2.k | |- K = ( y e. X , z e. Y |-> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) ) |
||
| Assertion | imasubclem2 | |- ( ph -> K Fn ( X X. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | |- ( ph -> F e. V ) |
|
| 2 | imasubclem1.g | |- ( ph -> G e. W ) |
|
| 3 | imasubclem2.k | |- K = ( y e. X , z e. Y |-> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) ) |
|
| 4 | 1 2 | imasubclem1 | |- ( ph -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |
| 5 | 4 | adantr | |- ( ( ph /\ ( y e. X /\ z e. Y ) ) -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |
| 6 | 5 | ralrimivva | |- ( ph -> A. y e. X A. z e. Y U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |
| 7 | 3 | fnmpo | |- ( A. y e. X A. z e. Y U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V -> K Fn ( X X. Y ) ) |
| 8 | 6 7 | syl | |- ( ph -> K Fn ( X X. Y ) ) |