This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homffval.f | |- F = ( Homf ` C ) |
|
| homffval.b | |- B = ( Base ` C ) |
||
| homffval.h | |- H = ( Hom ` C ) |
||
| homfval.x | |- ( ph -> X e. B ) |
||
| homfval.y | |- ( ph -> Y e. B ) |
||
| Assertion | homfval | |- ( ph -> ( X F Y ) = ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homffval.f | |- F = ( Homf ` C ) |
|
| 2 | homffval.b | |- B = ( Base ` C ) |
|
| 3 | homffval.h | |- H = ( Hom ` C ) |
|
| 4 | homfval.x | |- ( ph -> X e. B ) |
|
| 5 | homfval.y | |- ( ph -> Y e. B ) |
|
| 6 | 1 2 3 | homffval | |- F = ( x e. B , y e. B |-> ( x H y ) ) |
| 7 | 6 | a1i | |- ( ph -> F = ( x e. B , y e. B |-> ( x H y ) ) ) |
| 8 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
| 10 | ovexd | |- ( ph -> ( X H Y ) e. _V ) |
|
| 11 | 7 9 4 5 10 | ovmpod | |- ( ph -> ( X F Y ) = ( X H Y ) ) |