This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphism map of a full functor is a surjection. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfull.b | |- B = ( Base ` C ) |
|
| isfull.j | |- J = ( Hom ` D ) |
||
| isfull.h | |- H = ( Hom ` C ) |
||
| fullfo.f | |- ( ph -> F ( C Full D ) G ) |
||
| fullfo.x | |- ( ph -> X e. B ) |
||
| fullfo.y | |- ( ph -> Y e. B ) |
||
| Assertion | fullfo | |- ( ph -> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfull.b | |- B = ( Base ` C ) |
|
| 2 | isfull.j | |- J = ( Hom ` D ) |
|
| 3 | isfull.h | |- H = ( Hom ` C ) |
|
| 4 | fullfo.f | |- ( ph -> F ( C Full D ) G ) |
|
| 5 | fullfo.x | |- ( ph -> X e. B ) |
|
| 6 | fullfo.y | |- ( ph -> Y e. B ) |
|
| 7 | 1 2 3 | isfull2 | |- ( F ( C Full D ) G <-> ( F ( C Func D ) G /\ A. x e. B A. y e. B ( x G y ) : ( x H y ) -onto-> ( ( F ` x ) J ( F ` y ) ) ) ) |
| 8 | 7 | simprbi | |- ( F ( C Full D ) G -> A. x e. B A. y e. B ( x G y ) : ( x H y ) -onto-> ( ( F ` x ) J ( F ` y ) ) ) |
| 9 | 4 8 | syl | |- ( ph -> A. x e. B A. y e. B ( x G y ) : ( x H y ) -onto-> ( ( F ` x ) J ( F ` y ) ) ) |
| 10 | 6 | adantr | |- ( ( ph /\ x = X ) -> Y e. B ) |
| 11 | simplr | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> x = X ) |
|
| 12 | simpr | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> y = Y ) |
|
| 13 | 11 12 | oveq12d | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( x G y ) = ( X G Y ) ) |
| 14 | 11 12 | oveq12d | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
| 15 | 11 | fveq2d | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( F ` x ) = ( F ` X ) ) |
| 16 | 12 | fveq2d | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( F ` y ) = ( F ` Y ) ) |
| 17 | 15 16 | oveq12d | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
| 18 | 13 14 17 | foeq123d | |- ( ( ( ph /\ x = X ) /\ y = Y ) -> ( ( x G y ) : ( x H y ) -onto-> ( ( F ` x ) J ( F ` y ) ) <-> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) ) |
| 19 | 10 18 | rspcdv | |- ( ( ph /\ x = X ) -> ( A. y e. B ( x G y ) : ( x H y ) -onto-> ( ( F ` x ) J ( F ` y ) ) -> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) ) |
| 20 | 5 19 | rspcimdv | |- ( ph -> ( A. x e. B A. y e. B ( x G y ) : ( x H y ) -onto-> ( ( F ` x ) J ( F ` y ) ) -> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) ) |
| 21 | 9 20 | mpd | |- ( ph -> ( X G Y ) : ( X H Y ) -onto-> ( ( F ` X ) J ( F ` Y ) ) ) |