This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of imafi as of 25-Jun-2025. (Contributed by Stefan O'Rear, 22-Feb-2015) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imafiOLD | |- ( ( Fun F /\ X e. Fin ) -> ( F " X ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq2 | |- ( x = (/) -> ( F " x ) = ( F " (/) ) ) |
|
| 2 | 1 | eleq1d | |- ( x = (/) -> ( ( F " x ) e. Fin <-> ( F " (/) ) e. Fin ) ) |
| 3 | 2 | imbi2d | |- ( x = (/) -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " (/) ) e. Fin ) ) ) |
| 4 | imaeq2 | |- ( x = y -> ( F " x ) = ( F " y ) ) |
|
| 5 | 4 | eleq1d | |- ( x = y -> ( ( F " x ) e. Fin <-> ( F " y ) e. Fin ) ) |
| 6 | 5 | imbi2d | |- ( x = y -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " y ) e. Fin ) ) ) |
| 7 | imaeq2 | |- ( x = ( y u. { z } ) -> ( F " x ) = ( F " ( y u. { z } ) ) ) |
|
| 8 | 7 | eleq1d | |- ( x = ( y u. { z } ) -> ( ( F " x ) e. Fin <-> ( F " ( y u. { z } ) ) e. Fin ) ) |
| 9 | 8 | imbi2d | |- ( x = ( y u. { z } ) -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " ( y u. { z } ) ) e. Fin ) ) ) |
| 10 | imaeq2 | |- ( x = X -> ( F " x ) = ( F " X ) ) |
|
| 11 | 10 | eleq1d | |- ( x = X -> ( ( F " x ) e. Fin <-> ( F " X ) e. Fin ) ) |
| 12 | 11 | imbi2d | |- ( x = X -> ( ( Fun F -> ( F " x ) e. Fin ) <-> ( Fun F -> ( F " X ) e. Fin ) ) ) |
| 13 | ima0 | |- ( F " (/) ) = (/) |
|
| 14 | 0fi | |- (/) e. Fin |
|
| 15 | 13 14 | eqeltri | |- ( F " (/) ) e. Fin |
| 16 | 15 | a1i | |- ( Fun F -> ( F " (/) ) e. Fin ) |
| 17 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 18 | fnsnfv | |- ( ( F Fn dom F /\ z e. dom F ) -> { ( F ` z ) } = ( F " { z } ) ) |
|
| 19 | 17 18 | sylanb | |- ( ( Fun F /\ z e. dom F ) -> { ( F ` z ) } = ( F " { z } ) ) |
| 20 | snfi | |- { ( F ` z ) } e. Fin |
|
| 21 | 19 20 | eqeltrrdi | |- ( ( Fun F /\ z e. dom F ) -> ( F " { z } ) e. Fin ) |
| 22 | ndmima | |- ( -. z e. dom F -> ( F " { z } ) = (/) ) |
|
| 23 | 22 14 | eqeltrdi | |- ( -. z e. dom F -> ( F " { z } ) e. Fin ) |
| 24 | 23 | adantl | |- ( ( Fun F /\ -. z e. dom F ) -> ( F " { z } ) e. Fin ) |
| 25 | 21 24 | pm2.61dan | |- ( Fun F -> ( F " { z } ) e. Fin ) |
| 26 | imaundi | |- ( F " ( y u. { z } ) ) = ( ( F " y ) u. ( F " { z } ) ) |
|
| 27 | unfi | |- ( ( ( F " y ) e. Fin /\ ( F " { z } ) e. Fin ) -> ( ( F " y ) u. ( F " { z } ) ) e. Fin ) |
|
| 28 | 26 27 | eqeltrid | |- ( ( ( F " y ) e. Fin /\ ( F " { z } ) e. Fin ) -> ( F " ( y u. { z } ) ) e. Fin ) |
| 29 | 25 28 | sylan2 | |- ( ( ( F " y ) e. Fin /\ Fun F ) -> ( F " ( y u. { z } ) ) e. Fin ) |
| 30 | 29 | expcom | |- ( Fun F -> ( ( F " y ) e. Fin -> ( F " ( y u. { z } ) ) e. Fin ) ) |
| 31 | 30 | a2i | |- ( ( Fun F -> ( F " y ) e. Fin ) -> ( Fun F -> ( F " ( y u. { z } ) ) e. Fin ) ) |
| 32 | 31 | a1i | |- ( y e. Fin -> ( ( Fun F -> ( F " y ) e. Fin ) -> ( Fun F -> ( F " ( y u. { z } ) ) e. Fin ) ) ) |
| 33 | 3 6 9 12 16 32 | findcard2 | |- ( X e. Fin -> ( Fun F -> ( F " X ) e. Fin ) ) |
| 34 | 33 | impcom | |- ( ( Fun F /\ X e. Fin ) -> ( F " X ) e. Fin ) |