This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of imafi as of 25-Jun-2025. (Contributed by Stefan O'Rear, 22-Feb-2015) Avoid ax-pow . (Revised by BTernaryTau, 7-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imafiOLD | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ 𝑋 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq2 | ⊢ ( 𝑥 = ∅ → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ∅ ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ ∅ ) ∈ Fin ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ ∅ ) ∈ Fin ) ) ) |
| 4 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ 𝑦 ) ∈ Fin ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ 𝑦 ) ∈ Fin ) ) ) |
| 7 | imaeq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 10 | imaeq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑋 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 “ 𝑥 ) ∈ Fin ↔ ( 𝐹 “ 𝑋 ) ∈ Fin ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( Fun 𝐹 → ( 𝐹 “ 𝑥 ) ∈ Fin ) ↔ ( Fun 𝐹 → ( 𝐹 “ 𝑋 ) ∈ Fin ) ) ) |
| 13 | ima0 | ⊢ ( 𝐹 “ ∅ ) = ∅ | |
| 14 | 0fi | ⊢ ∅ ∈ Fin | |
| 15 | 13 14 | eqeltri | ⊢ ( 𝐹 “ ∅ ) ∈ Fin |
| 16 | 15 | a1i | ⊢ ( Fun 𝐹 → ( 𝐹 “ ∅ ) ∈ Fin ) |
| 17 | funfn | ⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) | |
| 18 | fnsnfv | ⊢ ( ( 𝐹 Fn dom 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝑧 ) } = ( 𝐹 “ { 𝑧 } ) ) | |
| 19 | 17 18 | sylanb | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → { ( 𝐹 ‘ 𝑧 ) } = ( 𝐹 “ { 𝑧 } ) ) |
| 20 | snfi | ⊢ { ( 𝐹 ‘ 𝑧 ) } ∈ Fin | |
| 21 | 19 20 | eqeltrrdi | ⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
| 22 | ndmima | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → ( 𝐹 “ { 𝑧 } ) = ∅ ) | |
| 23 | 22 14 | eqeltrdi | ⊢ ( ¬ 𝑧 ∈ dom 𝐹 → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
| 24 | 23 | adantl | ⊢ ( ( Fun 𝐹 ∧ ¬ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
| 25 | 21 24 | pm2.61dan | ⊢ ( Fun 𝐹 → ( 𝐹 “ { 𝑧 } ) ∈ Fin ) |
| 26 | imaundi | ⊢ ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) | |
| 27 | unfi | ⊢ ( ( ( 𝐹 “ 𝑦 ) ∈ Fin ∧ ( 𝐹 “ { 𝑧 } ) ∈ Fin ) → ( ( 𝐹 “ 𝑦 ) ∪ ( 𝐹 “ { 𝑧 } ) ) ∈ Fin ) | |
| 28 | 26 27 | eqeltrid | ⊢ ( ( ( 𝐹 “ 𝑦 ) ∈ Fin ∧ ( 𝐹 “ { 𝑧 } ) ∈ Fin ) → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 29 | 25 28 | sylan2 | ⊢ ( ( ( 𝐹 “ 𝑦 ) ∈ Fin ∧ Fun 𝐹 ) → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 30 | 29 | expcom | ⊢ ( Fun 𝐹 → ( ( 𝐹 “ 𝑦 ) ∈ Fin → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 31 | 30 | a2i | ⊢ ( ( Fun 𝐹 → ( 𝐹 “ 𝑦 ) ∈ Fin ) → ( Fun 𝐹 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) |
| 32 | 31 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( Fun 𝐹 → ( 𝐹 “ 𝑦 ) ∈ Fin ) → ( Fun 𝐹 → ( 𝐹 “ ( 𝑦 ∪ { 𝑧 } ) ) ∈ Fin ) ) ) |
| 33 | 3 6 9 12 16 32 | findcard2 | ⊢ ( 𝑋 ∈ Fin → ( Fun 𝐹 → ( 𝐹 “ 𝑋 ) ∈ Fin ) ) |
| 34 | 33 | impcom | ⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ Fin ) → ( 𝐹 “ 𝑋 ) ∈ Fin ) |