This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwfir | |- ( ~P B e. Fin -> B e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | |- ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } " ~P B ) = ran ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |` ~P B ) |
|
| 2 | relopab | |- Rel { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |
|
| 3 | dmopabss | |- dom { <. x , y >. | ( x e. ~P B /\ { y } = x ) } C_ ~P B |
|
| 4 | relssres | |- ( ( Rel { <. x , y >. | ( x e. ~P B /\ { y } = x ) } /\ dom { <. x , y >. | ( x e. ~P B /\ { y } = x ) } C_ ~P B ) -> ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |` ~P B ) = { <. x , y >. | ( x e. ~P B /\ { y } = x ) } ) |
|
| 5 | 2 3 4 | mp2an | |- ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |` ~P B ) = { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |
| 6 | 5 | rneqi | |- ran ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |` ~P B ) = ran { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |
| 7 | rnopab | |- ran { <. x , y >. | ( x e. ~P B /\ { y } = x ) } = { y | E. x ( x e. ~P B /\ { y } = x ) } |
|
| 8 | eleq1 | |- ( { y } = x -> ( { y } e. ~P B <-> x e. ~P B ) ) |
|
| 9 | 8 | biimparc | |- ( ( x e. ~P B /\ { y } = x ) -> { y } e. ~P B ) |
| 10 | vex | |- y e. _V |
|
| 11 | 10 | snelpw | |- ( y e. B <-> { y } e. ~P B ) |
| 12 | 9 11 | sylibr | |- ( ( x e. ~P B /\ { y } = x ) -> y e. B ) |
| 13 | 12 | exlimiv | |- ( E. x ( x e. ~P B /\ { y } = x ) -> y e. B ) |
| 14 | snelpwi | |- ( y e. B -> { y } e. ~P B ) |
|
| 15 | eqid | |- { y } = { y } |
|
| 16 | eqeq2 | |- ( x = { y } -> ( { y } = x <-> { y } = { y } ) ) |
|
| 17 | 16 | rspcev | |- ( ( { y } e. ~P B /\ { y } = { y } ) -> E. x e. ~P B { y } = x ) |
| 18 | 14 15 17 | sylancl | |- ( y e. B -> E. x e. ~P B { y } = x ) |
| 19 | df-rex | |- ( E. x e. ~P B { y } = x <-> E. x ( x e. ~P B /\ { y } = x ) ) |
|
| 20 | 18 19 | sylib | |- ( y e. B -> E. x ( x e. ~P B /\ { y } = x ) ) |
| 21 | 13 20 | impbii | |- ( E. x ( x e. ~P B /\ { y } = x ) <-> y e. B ) |
| 22 | 21 | abbii | |- { y | E. x ( x e. ~P B /\ { y } = x ) } = { y | y e. B } |
| 23 | abid2 | |- { y | y e. B } = B |
|
| 24 | 7 22 23 | 3eqtri | |- ran { <. x , y >. | ( x e. ~P B /\ { y } = x ) } = B |
| 25 | 1 6 24 | 3eqtri | |- ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } " ~P B ) = B |
| 26 | funopab | |- ( Fun { <. x , y >. | ( x e. ~P B /\ { y } = x ) } <-> A. x E* y ( x e. ~P B /\ { y } = x ) ) |
|
| 27 | mosneq | |- E* y { y } = x |
|
| 28 | 27 | moani | |- E* y ( x e. ~P B /\ { y } = x ) |
| 29 | 26 28 | mpgbir | |- Fun { <. x , y >. | ( x e. ~P B /\ { y } = x ) } |
| 30 | imafi | |- ( ( Fun { <. x , y >. | ( x e. ~P B /\ { y } = x ) } /\ ~P B e. Fin ) -> ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } " ~P B ) e. Fin ) |
|
| 31 | 29 30 | mpan | |- ( ~P B e. Fin -> ( { <. x , y >. | ( x e. ~P B /\ { y } = x ) } " ~P B ) e. Fin ) |
| 32 | 25 31 | eqeltrrid | |- ( ~P B e. Fin -> B e. Fin ) |