This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imafi | |- ( ( Fun F /\ X e. Fin ) -> ( F " X ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmres | |- ( F " dom ( F |` X ) ) = ( F " X ) |
|
| 2 | simpr | |- ( ( Fun F /\ X e. Fin ) -> X e. Fin ) |
|
| 3 | dmres | |- dom ( F |` X ) = ( X i^i dom F ) |
|
| 4 | inss1 | |- ( X i^i dom F ) C_ X |
|
| 5 | 3 4 | eqsstri | |- dom ( F |` X ) C_ X |
| 6 | ssfi | |- ( ( X e. Fin /\ dom ( F |` X ) C_ X ) -> dom ( F |` X ) e. Fin ) |
|
| 7 | 2 5 6 | sylancl | |- ( ( Fun F /\ X e. Fin ) -> dom ( F |` X ) e. Fin ) |
| 8 | resss | |- ( F |` X ) C_ F |
|
| 9 | dmss | |- ( ( F |` X ) C_ F -> dom ( F |` X ) C_ dom F ) |
|
| 10 | 8 9 | mp1i | |- ( ( Fun F /\ X e. Fin ) -> dom ( F |` X ) C_ dom F ) |
| 11 | fores | |- ( ( Fun F /\ dom ( F |` X ) C_ dom F ) -> ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) |
|
| 12 | 10 11 | syldan | |- ( ( Fun F /\ X e. Fin ) -> ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) |
| 13 | fofi | |- ( ( dom ( F |` X ) e. Fin /\ ( F |` dom ( F |` X ) ) : dom ( F |` X ) -onto-> ( F " dom ( F |` X ) ) ) -> ( F " dom ( F |` X ) ) e. Fin ) |
|
| 14 | 7 12 13 | syl2anc | |- ( ( Fun F /\ X e. Fin ) -> ( F " dom ( F |` X ) ) e. Fin ) |
| 15 | 1 14 | eqeltrrid | |- ( ( Fun F /\ X e. Fin ) -> ( F " X ) e. Fin ) |