This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resubmet.1 | |- R = ( topGen ` ran (,) ) |
|
| resubmet.2 | |- J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) |
||
| Assertion | resubmet | |- ( A C_ RR -> J = ( R |`t A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubmet.1 | |- R = ( topGen ` ran (,) ) |
|
| 2 | resubmet.2 | |- J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) |
|
| 3 | xpss12 | |- ( ( A C_ RR /\ A C_ RR ) -> ( A X. A ) C_ ( RR X. RR ) ) |
|
| 4 | 3 | anidms | |- ( A C_ RR -> ( A X. A ) C_ ( RR X. RR ) ) |
| 5 | 4 | resabs1d | |- ( A C_ RR -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) ) ) |
| 6 | 5 | fveq2d | |- ( A C_ RR -> ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
| 7 | 2 6 | eqtr4id | |- ( A C_ RR -> J = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) |
| 8 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 9 | 8 | rexmet | |- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 10 | eqid | |- ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) |
|
| 11 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 12 | 8 11 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 13 | 1 12 | eqtri | |- R = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 14 | eqid | |- ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) |
|
| 15 | 10 13 14 | metrest | |- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A C_ RR ) -> ( R |`t A ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) |
| 16 | 9 15 | mpan | |- ( A C_ RR -> ( R |`t A ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) |
| 17 | 7 16 | eqtr4d | |- ( A C_ RR -> J = ( R |`t A ) ) |