This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adjacent left-closed right-open real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | icodisj | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) <-> ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) |
|
| 2 | elico1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
|
| 3 | 2 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
| 4 | 3 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> ( x e. RR* /\ A <_ x /\ x < B ) ) |
| 5 | 4 | simp3d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( A [,) B ) ) -> x < B ) |
| 6 | 5 | adantrr | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> x < B ) |
| 7 | elico1 | |- ( ( B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
|
| 8 | 7 | 3adant1 | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( B [,) C ) <-> ( x e. RR* /\ B <_ x /\ x < C ) ) ) |
| 9 | 8 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( x e. RR* /\ B <_ x /\ x < C ) ) |
| 10 | 9 | simp2d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B <_ x ) |
| 11 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> B e. RR* ) |
|
| 12 | 9 | simp1d | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> x e. RR* ) |
| 13 | 11 12 | xrlenltd | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> ( B <_ x <-> -. x < B ) ) |
| 14 | 10 13 | mpbid | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ x e. ( B [,) C ) ) -> -. x < B ) |
| 15 | 14 | adantrl | |- ( ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) /\ ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) -> -. x < B ) |
| 16 | 6 15 | pm2.65da | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> -. ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) ) |
| 17 | 16 | pm2.21d | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( x e. ( A [,) B ) /\ x e. ( B [,) C ) ) -> x e. (/) ) ) |
| 18 | 1 17 | biimtrid | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( x e. ( ( A [,) B ) i^i ( B [,) C ) ) -> x e. (/) ) ) |
| 19 | 18 | ssrdv | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) ) |
| 20 | ss0 | |- ( ( ( A [,) B ) i^i ( B [,) C ) ) C_ (/) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |
|
| 21 | 19 20 | syl | |- ( ( A e. RR* /\ B e. RR* /\ C e. RR* ) -> ( ( A [,) B ) i^i ( B [,) C ) ) = (/) ) |